Skip to main content
Log in

Vanishing Cycles and Cartan Eigenvectors

  • Research Contribution
  • Published:
Arnold Mathematical Journal Aims and scope Submit manuscript

Abstract

Using the ideas coming from the singularity theory, we study the eigenvectors of the Cartan matrices of finite root systems, and of q-deformations of these matrices

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. This formulation has been suggested by A. Givental.

References

  • Arnold, V.I., Varchenko, A.N., Gusein-Zade, S.M.: Singularities of Differentiable Maps, Volume II Monodromy and Asymptotics of Integrals. Monographs in Mathematics vol. 83. Birkhäuser, Basel (1988)

  • Borthwick, D., Garibaldi, S.: Did a 1-dimensional magnet detect a 248-dimensional lie algebra? AMS Not. 58, 1055–1065 (2011)

    MathSciNet  MATH  Google Scholar 

  • Bourbaki, N.: éléments de Mathématique. Groupes et algèbres de Lie Chapitre 4 à 6. Springer Science & Business Media, 26 mai 2007 – 282 pages. ISBN 978-3-540-34491-9

  • Brieskorn, E.: Automorphic sets and braids and singularities. Contemp. Math. 78, 45–115 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Brillon, L., Schechtman, V.: Coxeter element and particle masses. Sel. Math. New Ser. 22(4), 2591–2609 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Casselman, B.: Essays on Coxeter groups. Coxeter elements in finite Coxeter groups (2017). https://www.math.ubc.ca/~cass/research/pdf/Element

  • Chakrabarti, B.K., Dutta, A., Sen, P.: Quantum Ising Phases and Transitions in Transverse Ising Models. Lecture Notes in Physics Monographs, vol. 41. Springer, Berlin

  • Coldea, R., Tennant, D.A., Wheeler, E.M., Wawrzynska, E., Prabhakaran, D., Telling, M., Habicht, K., Smeibidl, P., Kiefer, K.: Quantum criticality in an Ising chain: experimental evidence for emergent \(E_8\) symmetry. Science 327, 177–180 (2010)

    Article  Google Scholar 

  • Coxeter, H.S.M.: The product of the generators of a finite group generated by reflections. Duke Math. J. 18, 765–782 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  • Delfino, G.: Integrable field theory and critical phenomena: the Ising model in a magnetic field. J. Phys. A Math. Gen. 37, R45–R78 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Dorey, P.: The exact \(S\)-matrices of affine Toda field theories. Durham PhD thesis (1990)

  • Dorey, P.: Root systems and purely elastic \(S\)-matrices. Nucl. Phys. B 358, 654–676 (1991)

    Article  MathSciNet  Google Scholar 

  • Gabrielov, A.: Intersection matrices for some singularities. Funct. Anal. Appl. 7(3), 182–193 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Givental, A.: Twisted Picard–Lefschetz formulas. Funct. Anal. Appl. 22(1), 10–18 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Goss Levi, B.: A complex symmetry arises at a spin chain’s quantum critical point. Phys. Today 63(3), 13 (2010). doi:10.1063/1.3366227

  • Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory, 2nd edn. Springer, New York (1990)

  • Knapp, A.: Elliptic curves. Princeton University Press, Princeton (1992)

  • Kostant, B.: Experimental evidence for the occuring of \(E_8\) in nature and Gosset circles. Selecta Math.16, 419–438 (2010)

  • Kostant, B.: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Am. J. Math.81, 973–1032 (1959)

  • Lamotke, K.: Die Homologie isolierter Singularitäten. Math. Z. 143, 27–44 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Lefschetz, S.: L’analysis situs et la géométrie algébrique. Gauthier-Villars, Paris (1950)

  • Mikhailov, A.V., Olshanetsky, M.A., Perelomov, A.M.: Two-dimensional generalized Toda lattice. Commun. Math. Phys. 79, 473–488 (1981)

    Article  MathSciNet  Google Scholar 

  • Milnor, J.: Singular Points of Complex Hypersurfaces (AM-61). Annals of Mathematics Studies 61. Princeton University Press (2016)

  • Rajaraman, R.: Solitons and instantons. An Introduction to Solitons and Instantons in Quantum Field Theory. North-Holland Publishing Company. Elsevier, Amsterdam (1989)

  • Sebastiani, M., Thom, R.: Un résultat sur la monodromie. Inv. Math. 13, 90–96 (1971)

    Article  MATH  Google Scholar 

  • Serre, J.-P.: Cours d’Arithmétique. Presses Universitaires de France, Paris (1970)

  • Steinberg, R.: Finite subgroups of \(SU_2\), Dynkin diagrams and affine Coxeter elements. Pac. J. Math. 118, 587–598 (1985)

    Article  MATH  Google Scholar 

  • Zamolodchikov, A.B.: Integrable field theory from Conformal field theory. In: Integrable Systems in Quantum Field Theory and Statistical Mechanics, Adv. Studies in Pure Math., vol. 19, pp. 641–674 (1989a)

  • Zamolodchikov, A.B.: Integrals of motion and: \(S\)-matrix of the (scaled) \(T = T_c\) Ising model with magnetic field. Int. J. Mod. Phys. A 4, 4235–4248 (1989b)

Download references

Acknowledgements

We are grateful to Misha Finkelberg, Andrei Gabrielov, and Sabir Gusein-Zade for the inspiring correspondence, and to Patrick Dorey for sending us his thesis. Our special gratitude goes to Sasha Givental whose remarks enabled us to generalize some statements and to simplify the exposition and to Maxim Kazarian for the enlightening comments on Gabrielov’s theorem. A.V. thanks MPI in Bonn for hospitality; he was supported in part by NSF Grant DMS-1362924 and the Simons Foundation Grant No. 336826.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Brillon.

Additional information

Revaz Ramazashvili contributed only to writing the Sect. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brillon, L., Ramazashvili, R., Schechtman, V. et al. Vanishing Cycles and Cartan Eigenvectors. Arnold Math J. 3, 251–280 (2017). https://doi.org/10.1007/s40598-017-0065-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40598-017-0065-y

Keywords

Navigation