Skip to main content
Log in

Polynomial Splitting Measures and Cohomology of the Pure Braid Group

  • Research Contribution
  • Published:
Arnold Mathematical Journal Aims and scope Submit manuscript

Abstract

We study for each n a one-parameter family of complex-valued measures on the symmetric group \(S_n\), which interpolate the probability of a monic, degree n, square-free polynomial in \(\mathbb {F}_q[x]\) having a given factorization type. For a fixed factorization type, indexed by a partition \(\lambda \) of n, the measure is known to be a Laurent polynomial. We express the coefficients of this polynomial in terms of characters associated to \(S_n\)-subrepresentations of the cohomology of the pure braid group \(H^{\bullet }(P_n, \mathbb {Q})\). We deduce that the splitting measures for all parameter values \(z= -\frac{1}{m}\) (resp. \(z= \frac{1}{m}\)), after rescaling, are characters of \(S_n\)-representations (resp. virtual \(S_n\)-representations).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnol’d, V.I.: The cohomology ring of the colored braid group. Math. Notes 5, 138–140 (1969) [English translation of: Mat. Zametki 5, 227–231 (1969)]

  • Bhargava, M.: Mass formulae for extensions of local fields, and conjectures on the density of number field discriminants. Int. Math. Res. Not. 17, Art. ID rnm052, 20 pp. (2007)

  • Callegaro, F., Gaiffi, G.: On models of the braid arrangement and their hidden symmetries. Int. Math. Res. Not. 21, 11117–11149 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, W.: Twisted cohomology of configuration spaces and spaces of maximal tori via point-counting (2016). eprint: arXiv:1603.03931

  • Church, T., Farb, B.: Representation theory and homological stability. Adv. Math. 245, 250–314 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Church, T., Ellenberg, J.S., Farb, B.: Representation stability in cohomology and asymptotics for families of varieties over finite fields. In: Algebraic Topology: Applications and New Directions, pp. 1–54. Contemporary Mathematics, vol. 620. American Mathematical Society, Providence (2014)

  • Church, T., Ellenberg, J.S., Farb, B.: FI-modules and stability for representations of symmetric groups. Duke Math. J. 164(9), 1833–1910 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Dedekind, R.: Über Zusammenhang zwischen der Theorie der Ideale und der Theorie der höhere Kongruenzen, Abh. König. Ges. der Wissen. zu Göttingen 23, 1–23 (1878)

  • Dimca, A., Yuzvinsky, S.: Lectures on Orlik–Solomon algebras. In: Arrangements, Local Systems and Singularities. Progress in Mathematics, vol. 283, pp. 83–110. Birkhäuser, Basel (2010)

  • Dołega, M., Féray, V., Śniady, P.: Explicit combinatorial interpretation of Kerov character polynomials as numbers of permutation factorizations. Adv. Math. 225, 81–120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Farb, B.: Representation stability. In: Proceedings of the 2014 ICM, Seoul, Korea. eprint: arXiv:1404.4065

  • Gaiffi, G.: The actions of \(S_{n+1}\) and \(S_n\) on the cohomology ring of a Coxeter arrangement of type \(A_{n-1}\). Manuscr. math. 91, 83–94 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Getzler, E.: Operads and moduli spaces of genus \(0\) Riemann surfaces. In: The Moduli Space of Curves (Texel Island 1994), pp. 199–230. Progress in Mathematics, vol. 129. Birkhäuser, Boston (1995)

  • Grothendieck, A.: Revêtements étales et groupe fondamental. Fasc. II: Exposés 6, 8 à11, Volume 1960/61 of Séminaire de Géomeétrie Albebrique. IHES, Paris (1963)

  • Hersh, P., Reiner, V.: Representation stability for cohomology of configuration spaces in \({\mathbb{R}}^d\) (Appendix joint with Steven Sam). In: International Mathematics Research Notices (2015). doi:10.1093/imrn/rnw060. eprint: arXiv:1505.04196v3

  • Kisin, M., Lehrer, G.I.: Equivariant Poincaré polynomials and counting points over finite fields. J. Algebra 247(2), 435–451 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Lagarias, J.C.: A family of measures on symmetric groups and the field with one element. J. Number Theory 161, 311–342 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Lagarias, J.C., Weiss, B.L.: Splitting behavior of \(S_n\) polynomials. Res. Number Theory 1, paper 9, 30 pp. (2015)

  • Lehrer, G.I.: On the Poincaré series associated with Coxeter group actions on complements of hyperplanes. J. Lond. Math. Soc. 36(2), 275–294 (1987)

    Article  MATH  Google Scholar 

  • Lehrer, G.I.: The \(\ell \)-adic cohomology of hyperplane complements. Bull. Lond. Math. Soc. 24, 76–82 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Lehrer, G.I., Solomon, L.: On the action of the symmetric group on the cohomology of the complement of its reflecting hyperplanes. J. Algebra 104(2), 410–424 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  • Mathieu, O.: Hidden \(\Sigma _{n+1}\)-actions. Commun. Math. Phys. 176, 467–474 (1996)

    Article  MathSciNet  Google Scholar 

  • Metropolis, N., Rota, G.-C.: Witt vectors and the algebra of necklaces. Adv. Math. 50, 95–125 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Moreau, C.: Sur les permutations circulaires distinctes. Nouvelles annales de mathématiques, journal des candidats aux écoles polytechnique et normale, Sér. 2(11), 309–314 (1872)

  • Orlik, P., Solomon, L.: Combinatorics and topology of complements of hyperplanes. Invent. Math. 56, 57–89 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Orlik, P., Terao, H.: Arrangements of Hyperplanes. Grundlehren der math. Wiss, vol. 300. Springer, Berlin (1992)

  • Rosen, M.: Number Theory in Function Fields. Graduate Texts in Mathematics, vol. 210. Springer, New York (2002)

  • Sagan, B.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, vol. 203. Springer Science and Business Media, Berlin (2013)

    MATH  Google Scholar 

  • Śniady, P.: Stanley character polynomials. In: The Mathematical Legacy of Richard P. Stanley, vol. 100, p. 323 (2016)

  • Stanley, R.P.: Some aspects of groups acting on finite posets. J. Comb. Theory Ser. A 32, 132–161 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Stanley, R.P.: Enumerative combinatorics, vol. 1. In: Cambridge Studies in Advanced Mathematics, vol. 49. Cambridge University Press, Cambridge (1997) [Corrected reprint of the 1986 original]

  • Sundaram, S.: The homology representations of the symmetric group on Cohen–Macaulay subposets of the partition lattice. Adv. Math. 104, 225–296 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Sundaram, S., Welker, V.: Group actions on arrangements of linear subspaces and applications to configuration spaces. Trans. Am. Math. Soc. 349(4), 1389–1420 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Weiss, B.L.: Probabilistic Galois theory over \(p\)-adic fields. J. Number Theory 133, 1537–1563 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Yuzvinsky, S.: Orlik-Solomon algebras in algebra, topology and geometry. Russ. Math. Surv. 56, 294–364 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We thank Richard Stanley for raising a question about the relation of the braid group cohomology to the regular representation, answered by Theorem 1.4. We thank Weiyan Chen for pointing out to us that Theorem 1.1 is shown in Lehrer (1987) and for subsequently bringing the work of Gaiffi (1996) to our attention. We thank Philip Tosteson and John Wiltshire-Gordon for helpful conversations. We thank the reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor Hyde.

Additional information

Work of J. C. Lagarias was partially supported by NSF Grant DMS-1401224.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyde, T., Lagarias, J.C. Polynomial Splitting Measures and Cohomology of the Pure Braid Group. Arnold Math J. 3, 219–249 (2017). https://doi.org/10.1007/s40598-017-0064-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40598-017-0064-z

Keywords

Mathematics Subject Classification

Navigation