Skip to main content
Log in

From convergence in distribution to uniform convergence

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

We present conditions that allow us to pass from the convergence of probability measures in distribution to the uniform convergence of the associated quantile functions. Under these conditions, one can in particular pass from the asymptotic distribution of collections of real numbers, such as the eigenvalues of a family of n-by-n matrices as n goes to infinity, to their uniform approximation by the values of the quantile function at equidistant points. For Hermitian Toeplitz-like matrices, convergence in distribution is ensured by theorems of the Szegő type. Our results transfer these convergence theorems into uniform convergence statements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bogachev, V.I.: Measure theory, vol. II. Springer-Verlag, Berlin and Heidelberg (2007)

    Book  MATH  Google Scholar 

  2. Bogoya, J.M., Böttcher, A., Grudsky, S.M., Maximenko, E.A.: Maximum norm versions of the Szegő and Avram-Parter theorems for Toeplitz matrices. J. Approx. Theory 196, 79–100 (2015). doi:10.1016/j.jat.2015.03.003

    Article  MathSciNet  MATH  Google Scholar 

  3. Bogoya, J.M., Böttcher, A., Grudsky, S.M., Maximenko, E.A.: Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols. J. Math. Anal. Appl. 422, 1308–1334 (2015). doi:10.1016/j.jmaa.2014.09.057

    Article  MathSciNet  MATH  Google Scholar 

  4. Böttcher, A., Grudsky, S.M.: Spectral properties of banded Toeplitz matrices. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  5. Böttcher, A., Grudsky, S., Maksimenko, E.A.: Inside the eigenvalues of certain Hermitian Toeplitz band matrices. J. Comput. Appl. Math. 233, 2245–2264 (2010). doi:10.1016/j.cam.2009.10.010

    Article  MathSciNet  MATH  Google Scholar 

  6. Böttcher, A., Gutiérrez-Gutiérrez, J., Crespo, P.M.: Mass concentration in quasicommutators of Toeplitz matrices. J. Comput. Appl. Math. 205, 129–148 (2007). doi:10.1016/j.cam.2006.04.046

    Article  MathSciNet  MATH  Google Scholar 

  7. Böttcher, A., Silbermann, B.: Introduction to large truncated Toeplitz matrices. Springer-Verlag, New York (1999)

    Book  MATH  Google Scholar 

  8. Deift, P., Its, A., Krasovsky, I.: Eigenvalues of Toeplitz matrices in the bulk of the spectrum. Bull. Inst. Math. Acad. Sin. (N.S.) 7, 437–461 (2012)

  9. Di Benedetto, F., Fiorentino, G., Serra, S.: C. G. preconditioning for Toeplitz matrices. Comput. Math. Appl. 25(6), 35–45 (1993). doi:10.1016/0898-1221(93)90297-9

    Article  MathSciNet  MATH  Google Scholar 

  10. Estatico, C., Ngondiep, E., Serra-Capizzano, S., Sesana, D.: A note on the (regularizing) preconditioning of \(g\)-Toeplitz sequences via \(g\)-circulants. J. Comput. Appl. Math. 236, 2090–2111 (2012). doi:10.1016/j.cam.2011.09.033

    Article  MathSciNet  MATH  Google Scholar 

  11. Garoni, C., Serra-Capizzano, S., Vassalos, P.: A general tool for determining the asymptotic spectral distribution of Hermitian matrix-sequences. Oper. Matrices 9, 549–561 (2015). doi:10.7153/oam-09-33

    Article  MathSciNet  MATH  Google Scholar 

  12. Kuipers, L., Niederreiter, H.: Uniform distribution of sequences. Wiley, New York, London, Sydney (1974)

    MATH  Google Scholar 

  13. Lesigne, E.: Heads or tails: an introduction to limit theorems in probability. Student Mathematical Library, vol. 28. AMS, Providence (2005)

  14. Ngondiep, E., Serra-Capizzano, S., Sesana, D.: Spectral features and asymptotic properties for \(g\)-circulants and \(g\)-Toeplitz sequences. SIAM J. Matrix Anal. Appl. 31, 1663–1687 (2010). doi:10.1137/090760209

    Article  MathSciNet  MATH  Google Scholar 

  15. Pólya, G., Szegő, G.: Problems and theorems in analysis I. Series. Integral calculus. Theory of functions. Springer-Verlag, Berlin, Heidelberg (1998)

    MATH  Google Scholar 

  16. Serra Capizzano, S.: Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations. Linear Algebra Appl. 366, 371–402 (2003). doi:10.1016/S0024-3795(02)00504-9

  17. Serra-Capizzano, S., Sesana, D., Strouse, E.: The eigenvalue distribution of products of Toeplitz matrices—clustering and attraction. Linear Algebra Appl. 432, 2658–2687 (2010). doi:10.1016/j.laa.2009.12.005

    Article  MathSciNet  MATH  Google Scholar 

  18. Simonenko, I.B.: Szegő type limit theorems for multidimensional discrete convolution operators with continuous symbols. Funct. Anal. Appl. 35, 77–78 (2001). doi:10.1023/A:1004136903704

    Article  MathSciNet  MATH  Google Scholar 

  19. Szegő, G.: Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reellen positiven Funktion. Math. Ann. 76, 490–503 (1915). doi:10.1007/BF01458220

    Article  MathSciNet  MATH  Google Scholar 

  20. Szegő, G.: Beiträge zur Theorie der Toeplitzschen Formen I. Math. Z. 6, 167–202 (1920). doi:10.1007/BF01199955

    Article  MathSciNet  MATH  Google Scholar 

  21. Tilli, P.: Locally Toeplitz sequences: spectral properties and applications. Linear Algebra Appl. 278, 91–120 (1998). doi:10.1016/S0024-3795(97)10079-9

    Article  MathSciNet  MATH  Google Scholar 

  22. Trench, W.F.: An elementary view of Weyl’s theory of equal distribution. Am. Math. Mon. 119, 852–861 (2012). doi:10.4169/amer.math.monthly.119.10.852

    Article  MathSciNet  MATH  Google Scholar 

  23. Tyrtyshnikov, E.E.: Influence of matrix operations on the distribution of eigenvalues and singular values of Toeplitz matrices. Linear Algebra Appl. 207, 225–249 (1994). doi:10.1016/0024-3795(94)90012-4

    Article  MathSciNet  MATH  Google Scholar 

  24. Tyrtyshnikov, E.E.: A unifying approach to some old and new theorems on distribution and clustering. Linear Algebra Appl. 232, 1–43 (1996). doi:10.1016/0024-3795(94)00025-5

    Article  MathSciNet  MATH  Google Scholar 

  25. Tyrtyshnikov, E.E.: Some applications of a matrix criterion for equidistribution. Mat. Sb. 192(12), 1877–1887 (2001). doi:10.1070/SM2001v192n12ABEH000618

    Article  MathSciNet  MATH  Google Scholar 

  26. van der Vaart, A.W.: Asymptotic statistics. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  27. Zabroda, O.N., Simonenko, I.B.: Asymptotic invertibility and the collective asymptotic spectral behavior of generalized one-dimensional discrete convolutions. Funct. Anal. Appl. 38, 65–66 (2004). doi:10.1023/B:FAIA.0000024869.01751.f0

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are greatly indebted to the referee for bringing reference [9] to our attention. Furthermore, in the original version of this paper, we still had Proposition 3.2 accompanied by a proof. We thank R. Michael Porter and Carlos G. Pacheco (CINVESTAV, Mexico) for giving us the hint that this proposition is just Problem 127 of [15].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Maximenko.

Additional information

To Sergei Grudsky, who has left his imprint on all the three of us, on his 60th birthday.

E. A. Maximenko’s research was partially supported by project IPN-SIP 20150422 (Instituto Politécnico Nacional, Mexico).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogoya, J.M., Böttcher, A. & Maximenko, E.A. From convergence in distribution to uniform convergence. Bol. Soc. Mat. Mex. 22, 695–710 (2016). https://doi.org/10.1007/s40590-016-0105-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40590-016-0105-y

Keywords

Mathematics Subject Classification

Navigation