Skip to main content

Advertisement

Log in

A Chromosome 13 locus is associated with male-specific mortality in mice

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background and aim

Mortality is a highly complex trait influenced by a wide array of genetic factors.

Methods

We examined a population of 1200 mice that were F2 generation offspring of a 4-way reciprocal cross between C57BL6/J and DBA2/J strains. Animals were sacrificed at age 200, 500, or 800 days and genotyped at 96 markers. The 800 days old cohort, which were the survivors of a much larger breeding group, were examined for enriched frequency of alleles that benefit survival and depletion of alleles that reduce survival.

Results

Loci on Chr 13 in males and on Chr X in females were significantly distorted from Mendelian expectations, even after conservative correction for multiple testing. DBA2/J alleles between 35 and 80 Mb on Chr 13 were underrepresented in the age 800 male animals. D2 genotypes in this region were also associated with premature death during behavioral testing. Furthermore, confirmatory analysis showed BXD recombinant inbred strains carrying the D2 alleles in this region had shorter median survival. Exploration of available pathology data indicated that a syndrome involving dental malocclusions, pancreatic islet hypertrophy, and kidney lipidosis may have mediated the effects of DBA alleles on mortality specifically in male mice. The heterozygote advantage locus on the X Chr was not found to be associated with any pathology.

Conclusions

These results suggest a novel locus influencing survival in the B6/D2 genetic background, perhaps via a metabolic disorder that emerges by 200 days of age in male animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Herskind AM, McGue M, Holm NV et al (1996) The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum Genet 97(3):319–323

    Article  CAS  PubMed  Google Scholar 

  2. Miller RA (1999) Kleemeier award lecture: are there genes for aging? J Gerontol A Biol Sci Med Sci 54(7):B297–B307

    Article  CAS  PubMed  Google Scholar 

  3. Willcox BJ, Donlon TA, He Q et al (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci USA 105(37):13987–13992. doi:10.1073/pnas.0801030105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Anselmi CV, Malovini A, Roncarati R et al (2009) Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study. Rejuvenation Res 12(2):95–104. doi:10.1089/rej.2008.0827

    Article  CAS  PubMed  Google Scholar 

  5. Flachsbart F, Caliebe A, Kleindorp R et al (2009) Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci USA 106(8):2700–2705. doi:10.1073/pnas.0809594106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Li Y, Wang WJ, Cao H et al (2009) Genetic association of FOXO1A and FOXO3A with longevity trait in Han Chinese populations. Hum Mol Genet 18(24):4897–4904. doi:10.1093/hmg/ddp459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Soerensen M, Dato S, Christensen K et al (2010) Replication of an association of variation in the FOXO3A gene with human longevity using both case-control and longitudinal data. Aging Cell 9(6):1010–1017. doi:10.1111/j.1474-9726.2010.00627.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Newman AB, Murabito JM (2013) The epidemiology of longevity and exceptional survival. Epidemiol Rev [Epub ahead of print]

  9. Leduc MS, Hageman RS, Meng Q et al (2010) Identification of genetic determinants of IGF-1 levels and longevity among mouse inbred strains. Aging Cell 9(5):823–836. doi:10.1111/j.1474-9726.2010.00612.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Lang DH, Gerhard GS, Griffith JW et al (2010) Quantitative trait loci (QTL) analysis of longevity in C57BL/6J by DBA/2J (BXD) recombinant inbred mice. Aging Clin Exp Res 22(1):8–19

    Article  CAS  PubMed  Google Scholar 

  11. Gelman R, Watson A, Bronson R et al (1988) Murine chromosomal regions correlated with longevity. Genetics 118(4):693–704

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Jackson AU, Galecki AT, Burke DT et al (2002) Mouse loci associated with life span exhibit sex-specific and epistatic effects. J Gerontol A Biol Sci Med Sci 57(1):B9–B15

    Article  PubMed  Google Scholar 

  13. Foreman JE, Lionikas A, Lang DH et al (2009) Genetic architecture for hole-board behaviors across substantial time intervals in young, middle-aged and old mice. Genes Brain Behav 8(7):714–727. doi:10.1111/j.1601-183X.2009.00516.x

    Article  CAS  PubMed  Google Scholar 

  14. Lang DH, Conroy DE, Lionikas A et al (2009) Bone, muscle, and physical activity: structural equation modeling of relationships and genetic influence with age. J Bone Miner Res 24(9):1608–1617. doi:10.1359/jbmr.090418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Blizard DA, Lionikas A, Vandenbergh DJ et al (2009) Blood pressure and heart rate QTL in mice of the B6/D2 lineage: sex differences and environmental influences. Physiol Genomics 36(3):158–166. doi:10.1152/physiolgenomics.00035.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Johannes F, Blizard DA, Lionikas A et al (2006) QTL influencing baseline hematocrit in the C57BL/6J and DBA/2J lineage: age-related effects. Mamm Genome 17(6):689–699

    Article  PubMed  Google Scholar 

  17. Foreman JE, Blizard DA, Gerhard G et al (2005) Serum alkaline phosphatase activity is regulated by a chromosomal region containing the alkaline phosphatase 2 gene (Akp2) in C57BL/6J and DBA/2J mice. Physiol Genomics 23(3):295–303

    Article  CAS  PubMed  Google Scholar 

  18. Wang J, Williams RW, Manly KF (2003) WebQTL: web-based complex trait analysis. Neuroinformatics 1(4):299–308

    Article  PubMed  Google Scholar 

  19. Murabito JM, Yuan R, Lunetta KL (2012) The search for longevity and healthy aging genes: insights from epidemiological studies and samples of long-lived individuals. J Gerontol A Biol Sci Med Sci 67(5):470–479. doi:10.1093/gerona/gls089

    Article  PubMed  Google Scholar 

  20. Nuzhdin SV, Pasyukova EG, Dilda CL et al (1997) Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster. Proc Natl Acad Sci USA 94(18):9734–9739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Gems D, Riddle DL (2000) Genetic, behavioral and environmental determinants of male longevity in Caenorhabditis elegans. Genetics 154(4):1597–1610

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Henckaerts E, Langer JC, Snoeck HW (2004) Quantitative genetic variation in the hematopoietic stem cell and progenitor cell compartment and in lifespan are closely linked at multiple loci in BXD recombinant inbred mice. Blood 104(2):374–379

    Article  CAS  PubMed  Google Scholar 

  23. Wang Q, Jin T (2009) The role of insulin signaling in the development of β-cell dysfunction and diabetes. Islets 1(2):95–101. doi:10.4161/isl.1.2.9263

    Article  PubMed  Google Scholar 

  24. Fuller JL, Cooper CW (1967) Saccharin reverses the effect of food deprivation upon fluid intake in mice. Anim Behav 15(4):403–408

    Article  CAS  PubMed  Google Scholar 

  25. Schreiber RA, Ungar AL (1984) Glucose protects DBA/2J mice from audiogenic seizures: correlation with brain glycogen levels. Psychopharmacology 84(1):128–131

    Article  CAS  PubMed  Google Scholar 

  26. Hummel KP, Coleman DL, Lane PW (1972) The influence of genetic background on expression of mutations at the diabetes locus in the mouse. I. C57BL-KsJ and C57BL-6J strains. Biochem Genet 7(1):1–13

    Article  CAS  PubMed  Google Scholar 

  27. Coleman DL (1981) Inherited obesity-diabetes syndromes in the mouse. Prog Clin Biol Res 45:145–158

    CAS  PubMed  Google Scholar 

  28. Anderson AA, Helmering J, Juan T et al (2009) Pancreatic islet expression profiling in diabetes-prone C57BLKS/J mice reveals transcriptional differences contributed by DBA loci, including Plagl1 and Nnt. Pathogenetics 2(1):1. doi:10.1186/1755-8417-2-1

    Article  PubMed Central  PubMed  Google Scholar 

  29. Clee SM, Attie AD (2007) The genetic landscape of type 2 diabetes in mice. Endocr Rev 28(1):48–83

    Article  CAS  PubMed  Google Scholar 

  30. Mu JL, Naggert JK, Svenson KL et al (1999) Quantitative trait loci analysis for the differences in susceptibility to atherosclerosis and diabetes between inbred mouse strains C57BL/6J and C57BLKS/J. J Lipid Res 40(7):1328–1335

    CAS  PubMed  Google Scholar 

  31. Togawa K, Moritani M, Yaguchi H et al (2006) Multidimensional genome scans identify the combinations of genetic loci linked to diabetes-related phenotypes. Hum Mol Genet 15:113–128

    Article  CAS  PubMed  Google Scholar 

  32. Weiss LA, Pan L, Abney M et al (2006) The sex-specific genetic architecture of quantitative traits in humans. Nat Genet 38(2):218–222

    Article  CAS  PubMed  Google Scholar 

  33. Doria A, Patti ME, Kahn CR (2008) The emerging genetic architecture of type 2 diabetes. Cell Metab 8(3):186–200. doi:10.1016/j.cmet.2008.08.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Blake JA, Bult CJ, Eppig JT et al (2014) The Mouse Genome Database: integration of and access to knowledge about the laboratory mouse. Nucleic Acids Res 42(D1):D810–D817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Rasche A, Al-Hasani H, Herwig R (2008) Meta-analysis approach identifies candidate genes and associated molecular networks for type-2 diabetes mellitus. BMC Genomics 9:310. doi:10.1186/1471-2164-9-310

    Article  PubMed Central  PubMed  Google Scholar 

  36. Toye AA, Lippiat JD, Proks P et al (2005) Agenetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice. Diabetologia 48(4):675–686

    Article  CAS  PubMed  Google Scholar 

  37. Aston-Mourney K, Wong N et al (2007) Increased nicotinamide nucleotide transhydrogenase levels predispose to insulin hypersecretion in a mouse strain susceptible to diabetes. Diabetologia 50(12):2476–2485

    Article  CAS  PubMed  Google Scholar 

  38. Wong N, Blair AR, Morahan G et al (2010) The deletion variant of nicotinamide nucleotide transhydrogenase (Nnt) does not affect insulin secretion or glucose tolerance. Endocrinology 151(1):96–102. doi:10.1210/en.2009-0887

    Article  CAS  PubMed  Google Scholar 

  39. Kido Y, Philippe N, Schäffer AA et al (2000) Genetic modifiers of the insulin resistance phenotype in mice. Diabetes 49(4):589–596

    Article  CAS  PubMed  Google Scholar 

  40. Kilimnik G, Kim A, Steiner DF et al (2010) Intraislet production of GLP-1 by activation of prohormone convertase 1/3 in pancreatic α-cells in mouse models of ß-cell regeneration. Islets. 2(3):149–155

    Article  PubMed Central  PubMed  Google Scholar 

  41. Strawbridge RJ, Dupuis J, Prokopenko I et al (2011) Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes 60(10):2624–2634. doi:10.2337/db11-0415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Manning AK, Hivert MF, Scott RA et al (2012) A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet 44(6):659–669. doi:10.1038/ng.2274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Liu S, Mauvais-Jarvis F (2010) Minireview: Estrogenic protection of beta-cell failure in metabolic diseases. Endocrinology 151(3):859–864. doi:10.1210/en.2009-1107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Oh YS, Khil LY, Cho KA et al (2008) A potential role for skeletal muscle caveolin-1 as an insulin sensitivity modulator in ageing-dependent non-obese type 2 diabetes: studies in a new mouse model. Diabetologia 51(6):1025–1034. doi:10.1007/s00125-008-0993-0

    Article  CAS  PubMed  Google Scholar 

  45. Oh YS, Lee TS, Cheon GJ et al (2011) Modulation of insulin sensitivity and caveolin-1 expression by orchidectomy in a nonobese type 2 diabetes animal model. Mol Med 17(1–2):4–11. doi:10.2119/molmed.2009.00105

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Petznek H, Kappler R, Scherthan H et al (2002) Reduced body growth and excessive incisor length in insertional mutants mapping to mouse Chromosome 13. Mamm Genome 13(9):504–509

    Article  CAS  PubMed  Google Scholar 

  47. Chávarry NG, Vettore MV, Sansone C et al (2009) The relationship between diabetes mellitus and destructive periodontal disease: a meta-analysis. Oral Health Prev Dent 7(2):107–127

    PubMed  Google Scholar 

  48. Santacroce L, Carlaio RG, Bottalico L (2010) Does it make sense that diabetes is reciprocally associated with periodontal disease? Endocr Metab Immune Disord Drug Targets 10(1):57–70

    Article  CAS  PubMed  Google Scholar 

  49. Saremi A, Nelson RG, Tulloch-Reid M et al (2005) Periodontal disease and mortality in type 2 diabetes. Diabetes Care 28(1):27–32

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the encouragement of Jerry McClearn Principal Investigator on P01-AG-14731 which supported this research. T32-AG-00276 provided stipends for graduate students. Jeanne Spicer provided superb database management. Thanks to Susan E. Lingenfelter, Kim A. Seymour, David A. Bienus, Gee-Sue Park, and Olivia Nourie for their excellent technical assistance and writing support.

Conflict of interest

All authors declare we have no financial conflicts of interest.

Human and Animal Rights

All animals were maintained according to protocols approved by the Institutional Animal Care and Use Committee of Penn State University.

Informed consent

This article does not report results of human subjects research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph P. Gyekis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gyekis, J.P., Lang, D.H., Vandenbergh, D.J. et al. A Chromosome 13 locus is associated with male-specific mortality in mice. Aging Clin Exp Res 28, 59–67 (2016). https://doi.org/10.1007/s40520-015-0370-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-015-0370-z

Keywords

Navigation