Skip to main content
Log in

Quantitative Trait Loci (QTL) analysis of longevity in C57BL/6J by DBA/2J (BXD) recombinant inbred mice

  • Original Articles
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background and aims: Genes associated with longevity have been identified using both single gene and genome-wide approaches in a variety of species. The aim of this study was to identify quantitative trait loci (QTLs) that influence longevity in male and female mice from twenty-three C57BL/6J by DBA/2J (BXD) recombinant inbred (RI) strains. Methods: Approximately 12 animals of each sex for each RI strain were maintained under standard conditions until natural death or moribundity criteria were met. Results: A number of life span-relevant loci previously reported on chromosomes (Chrs) 7,8, 10 and 11 were confirmed. In addition, 5 previously unre-ported QTLs for mouse life span on Chrs 1,2,6,11, and X were identified as significant and 3 QTLs on Chrs 5, 8, and 16 were suggestive. Conclusions: Several QTLs were coincident in males and females although the modest correlation between male and female median lifespans and the identification of sex specific QTLs provide evidence that the genetic architecture underlying longevity in the sexes may differ substantially. The identification of multiple QTLs for longevity will provide valuable resources for both reductionist and integrationist research into mechanisms of life span determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robertson A. The nature of quantitative genetic variation. In Brink RA, ed. Heritage from Mendel. Madison: The University of Wisconsin Press, 1967: 265–80.

    Google Scholar 

  2. Dewhirst FE, Chien CC, Paster BJ et al. Phylogeny of the defined murine microbiota: altered Schaedler flora. Appl Environ Microbiol 1999; 65: 3287–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Williams RW, Gu J, Qi S, Lu L. The genetic structure of recombinant inbred mice: High-resolution consensus maps for complex trait analysis. Genome Biology 2001; 2: research 0046.1-0046.18.

  4. Wang S, Basten CJ, Zeng ZB. Windows QTL Cartographer 2.0. Department of Statistics, North Carolina State University, Raleigh, NC (2001–2004) (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm) Release Date 2-20-03.

  5. Zeng ZB. Precision Mapping of Quantitative Trait Loci. Genetics 1994; 136: 1457–68.

    CAS  PubMed  Google Scholar 

  6. Broman KW. Review of statistical methods for QTL mapping in experimental crosses. Lab Animal 2001; 30: 44–52.

    CAS  PubMed  Google Scholar 

  7. Lander ES, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11: 241–7.

    Article  CAS  PubMed  Google Scholar 

  8. Gelman R, Watson A, Bronson R, Yunis E. Murine chromosomal regions correlated with longevity. Genetics 1988; 118: 693–704.

    CAS  PubMed  Google Scholar 

  9. de Haan G, Gelman R, Watson A, Yunis E, Van Zant G. A putative gene causes variability in lifespan among genotypically identical mice. Nat Genet 1998; 19: 114–6.

    Article  PubMed  Google Scholar 

  10. JAX® Mice Database, http://jaxmice.jax.org/strain/000040.html (9/26/2007).

  11. Miller RA, Chrisp C, Jackson AU, Burke D. Marker loci associated with life span in genetically heterogeneous mice. J Gerontol Med Sci 1998; 53A: M257–63.

    Article  Google Scholar 

  12. Mooijaart SP, van Heemst D, Schreuder J et al. Variation in the SHC1 gene and longevity in humans. Exp Gerontol 2004; 39: 263–8.

    Article  CAS  PubMed  Google Scholar 

  13. de Haan G, Van Zant G. Genetic analysis of hemopoietic cell cycling in mice suggests its involvement in organismal life span. FASEB J 1999; 13: 707–13.

    PubMed  Google Scholar 

  14. Jackson AU, Galecki AT, Burke DT, Miller RA. Mouse loci associated with life span exhibit sex-specific and epistatic effects. J Gerontol Series A Biol Sci Med Sci 2002; 57: B9–15.

    Article  Google Scholar 

  15. Vieira C, Pasyukova EG, Zeng ZB et al. Genotype-Environment Interaction for Quantitative Trait Loci Affecting Life Span in Drosophila Melanogaster. Genetics 2000; 154: 213–27.

    CAS  PubMed  Google Scholar 

  16. Klebanov S, Astle CM, Roderick TH et al. Maximum life spans in mice are extended by wild strain alleles. Exp Biol Med 2001; 226: 854–9.

    CAS  Google Scholar 

  17. Niedernhofer LJ, Garinis GA, Raams A et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 2006; 444: 1038–43.

    Article  CAS  PubMed  Google Scholar 

  18. Weeda G, Donker I, de Wit J et al. Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence. Curr Biol 1997; 7: 427–39.

    Article  CAS  PubMed  Google Scholar 

  19. De Luca M, Roshina NV, Geiger-Thornsberry GL et al. Dopa decarboxylase (Ddc) affects variation in Drosophila longevity. Nat Genet 2003; 34: 429–33.

    Article  PubMed  Google Scholar 

  20. Hsu HC, Mountz JD, Williams RW et al. Age-related change in thymic T-cell development is associated with genetic loci on mouse chromosomes 1, 3, and 11. Mech Ageing Dev 2002; 123: 1145–58.

    Article  CAS  PubMed  Google Scholar 

  21. Tripodis N, Hart AA, Finjneman RJ, Demant P. Complexity of lung cancer modifiers: mapping of thirty genes and twenty-five interactions in half of the mouse genome. J Natl Cancer Inst 2001; 93: 1484–91.

    Article  CAS  PubMed  Google Scholar 

  22. Reed T, Dick DM, Uniacke SK, Foroud T, Nichols WC. Genome-wide scan for a healthy aging phenotype provides support for a locus near D4S1564 promoting healthy aging. J Gerontol Series A Biol Sci Med Sci 2004; 59: 227–32.

    Article  Google Scholar 

  23. Wang Y, Nose M, Kamoto T, Nishimura M, Hiai H. Host modifier genes affect mouse autoimmunity induced by the lpr gene. Am J Pathol 1997; 6: 1791–8.

    Google Scholar 

  24. Maddatu TP, Garvey SM, Schroeder DG et al. Dilated cardiomyopathy in the nmd mouse: transgenic rescue and QTLs that improve cardiac function and survival. Hum Mol Genet 2005; 21: 3179–89.

    Article  Google Scholar 

  25. Lipman R, Galecki A, Burke DT, Miller RA. Genetic loci that influence cause of death in a heterogeneous mouse stock. J Gerontol Series A Biol Sci Med Sci 2004; 59: 977–83.

    Article  Google Scholar 

  26. Henchaerts E, Langer JC, Snoeck HW. Quantitative genetic variation in the hematopoietic stem cell and progenitor cell compartment and in life span are closely linked at multiple loci in BXD recombinant inbred mice. Blood 2004; 104: 374–9.

    Article  Google Scholar 

  27. Van Zant G. Genetic control of stem cells: implications for aging. Int J Hematol 2003; 77: 29–36.

    Article  PubMed  Google Scholar 

  28. de Haan G, Bystrykh LV, Weersing E et al. A genetic and genomic analysis identifies a cluster of genes associated with hematopoietic cell turnover. Blood 2002; 100: 2056–62.

    Article  PubMed  Google Scholar 

  29. Johannes F, Blizard DA, Lionikas A et al. QTL influencing baseline hematocrit in the C57BL/6J and DBA/2J lineage: age-related effects. Mammalian Genome 2006; 17: 689–99.

    Article  PubMed  Google Scholar 

  30. Chen J, Astle CM, Harrison DE. Hematopoietic senescence is postponed and hematopoietic stem cell function is enhanced by dietary restriction. Exp Hematol 2003; 31: 1097–103.

    Article  CAS  PubMed  Google Scholar 

  31. Koizumi A, Weindruch R, Walford RL. Influences of dietary restriction and age on liver enzyme activities and lipid peroxidation in mice. J Nutr 1987; 117: 361–7.

    CAS  PubMed  Google Scholar 

  32. Minotti G, Aust SD. Redox cycling of iron and lipid peroxidation. Lipids 1992; 27: 219–26.

    Article  CAS  PubMed  Google Scholar 

  33. Gerhard GS, Kaufmann EJ, Wang X et al. Genetic differences in hepatic lipid peroxidation potential and iron levels in mice. Mech Ageing Dev 2002; 123: 167–76.

    Article  CAS  PubMed  Google Scholar 

  34. Doria G, Biozzi G, Mouton D, Covelli V. Genetic control of immune responsiveness, aging and tumor incidence. Mech Ageing Dev 1997; 96: 1–13.

    Article  CAS  PubMed  Google Scholar 

  35. Puel A, Groot PC, Lathrop MG, Demant P, Mouton D. Mapping of genes controlling quantitative antibody production in Biozzi mice. J Immunol 1995; 154: 5799–805.

    CAS  PubMed  Google Scholar 

  36. Walford RL, Bergmann K. Influences of genes associated with the main histocompatibility complex on the deoxyribonucleic acid excision repair capacity and bleomycin sensitivity in mouse lymphocytes. Tissue Antigens 1979; 14: 336–42.

    Article  CAS  PubMed  Google Scholar 

  37. Hart RW, Setlow RB. Correlation between deoxyribonucleic acid, excision repair and life span in a number of mammalian species. Proc Natl Acad Sci 1974; 71: 2169–73.

    Article  CAS  PubMed  Google Scholar 

  38. Kasahara M, Watanabe Y, Sumasu M, Nagata T. A family of MHC class I-like genes located in the vicinity of the mouse leukocyte receptor complex. Proc Natl Acad Sci 2002; 99: 13687–92.

    Article  CAS  PubMed  Google Scholar 

  39. Holzenberger M, Dupont J, Ducos B et al. IGF-1 receptor regulates life span and resistance to oxidative stress in mice. Nature 2003; 421: 182–7.

    Article  CAS  PubMed  Google Scholar 

  40. Bluher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 2003; 299: 572–4.

    Article  PubMed  Google Scholar 

  41. Maier B, Gluba W, Bernier B et al. Modulation of mammalian life span by the short isoform of p53. Gene Develop 2004; 18: 306–19.

    Article  CAS  Google Scholar 

  42. Mouse Genome Informatics (MGI), http://www.informatics.jax.org (12-08-08)

  43. Luo J, Nikolaev AY, Imai S et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 2001; 107: 137–48.

    Article  CAS  PubMed  Google Scholar 

  44. Lin SJ, Defossez PA, Guarente L. Requirement of NAD and DIR2 for life-span extension by caloric restriction in Saccharomyces cere-visiae. Science 2000; 289: 2126–8.

    Article  CAS  PubMed  Google Scholar 

  45. Picard F, Kurtev M, Chung N et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004; 429: 771–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean H. Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, D.H., Gerhard, G.S., Griffith, J.W. et al. Quantitative Trait Loci (QTL) analysis of longevity in C57BL/6J by DBA/2J (BXD) recombinant inbred mice. Aging Clin Exp Res 22, 8–19 (2010). https://doi.org/10.1007/BF03324809

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03324809

Keywords

Navigation