Skip to main content
Log in

Antioxidative responses to short term waterlogging stress in pigeon pea

  • Short Communication
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Waterlogging stress is a major abiotic stress having detrimental effects on crop production. Pigeon pea (Cajanus cajan (L.) Millsp.) is a waterlogging sensitive legume crop. Effect of short term waterlogging stress was studied on the activity of antioxidant enzymes in two pigeon pea genotypes, viz., ICPL-84023 (waterlogging resistant) and MAL-18 (waterlogging susceptible). The objective of the present experiment was to study the changes in antioxidant enzyme system in response to waterlogging. Waterlogging stress was imposed for 12 h at early vegetative stage (20 days after sowing), and activities of superoxide dismutase, ascorbate peroxidase, catalase, peroxidase and polyphenol oxidase were recorded in the root tissues at 0, 3, 6, 9 and 12 h after imposing waterlogging stress. Enzyme activities were higher in ICPL-84023 as compared to MAL-18. Activities of peroxidase and polyphenol oxidase increased immediately (3 h) after imposing waterlogging stress, indicating the activation of antioxidant enzyme system at very early stages. Changes in superoxide dismutase activity were variable at different stages of observation. Catalase activity increased significantly at 9 h and then decreased. Ascorbate peroxidase activities did not change significantly under waterlogging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Aebi, H. (1983). Catalase. In H. U. Bergmeyer, J. Bergmeyer, & M. Grabl (Eds.), Methods in enzymatic analysis (3rd ed., pp. 273–286). Weinheim, FL: Verlag-Chemie.

    Google Scholar 

  • Ahmed, S., Nawata, E., & Sakuratani, T. (2002). Effects of waterlogging at vegetative and reproductive growth stages on photosynthesis, leaf water potential and yield in mungbean. Plant Production Science, 5(2), 117–123.

    Article  Google Scholar 

  • Bansal, R., & Srivastava, J. P. (2012). Antioxidative defense system in pigeonpea roots under waterlogging. Acta Physiolgiae Plantarum, 34, 515–522.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein the principle of protein-dye binding. Annals of Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Dhindsa, R. A., Dhindsa, P., & Thorpe, T. A. (1981). Leaf senescence: Correlated with increased permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 126, 93–101.

    Article  Google Scholar 

  • Giorgi, A., Mingozzi, M., Madeo, M., Speranza, G., & Cocucci, M. (2009). Effect of nitrogen starvation on the phenolic metabolism and antioxidant properties of yarrow (Achillea collina Becker ex Rchb). Food Chemistry, 14, 204–211.

    Article  Google Scholar 

  • Gomez, K. A., & Gomez, A. (1984). Statistical procedures for agricultural research (2nd ed., pp. 1–680). New York: Wiley.

    Google Scholar 

  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture for growing plants without soil. California Agricultural Experiment Station Bulletin, 347, 1–32.

    Google Scholar 

  • Hossain, Z., Lopez-Climent, M. F., Arbona, V., Perez-Clemente, R. M., & Gomez-Cadenas, A. (2009). Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage. Journal of Plant Physiology, 166(13), 1391–1404.

    Article  CAS  PubMed  Google Scholar 

  • ICRISAT archival report (2011) International Crops Research Institute for Semi-Arid Tropics, India. www.icrisat.org.

  • Jimenez, A., Hernandez, J. A., Pastori, G., del Rio, L. A., & Sevilla, F. (1998). Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiology, 118, 1327–1335.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kar, M., & Mishra, D. (1976). Catalase, peroxidase and polyphenoloxidase activities during rice leaf senescence. Plant Physiology, 57, 315–319.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumutha, D., Ezhilmathi, K., Sairam, R. K., Srivastava, G. C., Deshmukh, P. S., & Meena, R. C. (2009). Waterlogging induced oxidative stress and antioxidant activity in pigeonpea genotypes. Biologia Plantarum, 53(1), 75–84.

    Article  CAS  Google Scholar 

  • Lin, K. H. R., Weng, C. C., Lo, H. F., & Chen, J. T. (2004). Study of the root antioxidative system of tomatoes and eggplants under waterlogged conditions. Plant Science, 167, 355–365.

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidases in spinach chloroplast. Plant and Cell Physiology, 22(5), 867–880.

    CAS  Google Scholar 

  • Noctor, G., & Foyer, C. (1998). Ascorbate and glutathione: Keeping active oxygen under control. Annual Review of Plant Physiology, 49, 249–279.

    Article  CAS  Google Scholar 

  • Qi, B., Yang, Y., Yin, Y., Xu, M., & Li, H. (2014). De novo sequencing, assembly and analysis of the Taxodium Zhonshansha’ roots and shoots transcriptome inresponse to short-term waterlogging. BMC Plant Biology, 14, 201.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sairam, R. K., Kumutha, D., Ezhilmathi, K., Deshmukh, P. S., & Srivastava, G. C. (2008). Physiology and biochemistry of waterlogging tolerance in plants. Biologia Plantarum, 52(3), 401–412.

    Article  CAS  Google Scholar 

  • Singh, V. P. (2010). Physiological and biochemical changes in pigeonpea [Cajanus cajan (L.) Millsp.] genotypes to waterlogging stress at early stage. Ph.D. thesis submitted to Banaras Hindu University, Varanasi, India.

  • Stanisavljevic, N. S., Nikolic, D. V., Jovanovic, Z. S., Samardzic, J. T., Radovic, S. R., & Maksimuvic, V. R. (2011). Antioxidative enzymes in the response of buckwheat (Fagopyrum esculentum Moench) to complete submergence. Archives of Biological Sciences, 63(2), 399–405.

    Article  Google Scholar 

  • Tan, W., Liu, J., Dai, T., Jing, Q., Cao, W., & Jiang, D. (2008). Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjectted to post-anthesis water-logging. Photosynthetica, 46, 21–27.

    Article  CAS  Google Scholar 

  • Van Bodegom, P. M., Broekman, R., Van Dijk, J., Bakker, C., & Aerts, R. (2005). Ferrous iron stimulates phenol oxidase activity and organic matter decomposition in waterlogged wetlands. Biogeochemistry, 76, 69–83.

    Article  CAS  Google Scholar 

  • Yaginuma, S., Shiraishi, T., Ohya, H., & Igarashi, K. (2002). Polyphenol increases in safflower and cucumber seedlings exposed to strong visible light with limited water. Bioscience, Biotechnology, and Biochemistry, 66, 65–72.

    Article  CAS  PubMed  Google Scholar 

  • Yan, B., Dai, Q., Liu, X., Huang, S., & Wang, Z. (1996). Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leave. Plant and Soil, 179, 261–268.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai Prakash Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, R., Srivastava, J.P. Antioxidative responses to short term waterlogging stress in pigeon pea. Ind J Plant Physiol. 20, 182–185 (2015). https://doi.org/10.1007/s40502-015-0152-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-015-0152-9

Keywords

Navigation