Skip to main content
Log in

Physiological and biochemical changes associated with flower development and senescence in Dianthus chinensis L

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Flowers of Dianthus chinensis growing in Kashmir University Botanic Garden (KUBG) were selected for the present study. Flower development and senescence was divided into six stages (I–VI), categorized as (I) tight bud stage, (II) mature bud stage, (III) paint brush stage, (IV) fully open/bloom stage, (V) partially senescent stage and (VI) senescent stage. Various physiological and biochemical changes associated with flower development and senescence were recorded. Fresh and dry mass, water content and flower diameter showed a continuous increase from bud to bloom, i.e., from stage I–IV and a significant decrease from stage V to VI. Scanning electron microscopic studies showed a clear degeneration of the cellular integrity and architecture with the onset of senescence in Dianthus chinensis. Soluble proteins, α-amino acids and sugar fractions increased with flower opening and showed a decrease as the senescence progressed. SDS-PAGE of the petal tissues revealed a decrease in both high and low molecular weight proteins. The present study suggests that the protein degradation is the key factor in regulating the process of flower senescence in this flower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arora, A. V. P., Singh, S. S., Sindhu, D. N., & Voleti, S. R. (2007). Oxidative stress mechanisms during flower senescence. Japan: Plant Stress Global Science Books. 228.

    Google Scholar 

  • Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. C., & Struhl, K. (1989). Current protocols in molecular biology. New York: John Wiley and Sons.

    Google Scholar 

  • Beileski, R. L. (1995). Onset of phloem export from senescent petals of daylily. Plant Physiology, 109, 557–565.

    Google Scholar 

  • Bieleski, R. L. (1993). Fructan hydrolysis drives petal expansion in the ephemeral daylily flower. Plant Physiology, 103(1), 213–219.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Celikel, F. G., & van Doorn, W. G. (1995). Solute leakage, lipid peroxidation, and protein degradation during the senescence of Iris tepals. Plant Physiology, 94, 515–521.

    Article  CAS  Google Scholar 

  • Eason, J. R., Ryan, D. J., Pinkney, T. T., & O’Donoghue, E. M. (2002). Programmed cell death during flower senescence: Isolation and characterization of cysteine proteases from Sandersonia aurantiaca. Functional Plant Biology, 29, 1055–1064.

    Article  CAS  Google Scholar 

  • Evans, R. Y., & Reid, M. S. (1988). Changes in carbohydrates and osmotic potential during rhythmic expansion of rose petals. Journal of the American Society for Horticultural Science, 113(6), 884–888.

    CAS  Google Scholar 

  • Gul, F., & Tahir, I. (2009). Effect of cool and wet storage on the postharvest performance of Nerine sarniensis cv. Red scapes. Acta Horticulturae., 847, 345–351.

    CAS  Google Scholar 

  • Gul, F., & Tahir, I. (2012). An effective protocol for improving vase life and postharvest performance of cut Narcissus tazetta flowers. Journal of the Saudi Society of Agricultural Sciences., 4(1), 75–83.

    Google Scholar 

  • Gulzar, S., Amin, I., Tahir, I., Farooq, S., & Sultan, S. M. (2005). Effect of cytokinins on the senescence and longevity of isolated flowers of daylily (Hemerocallis fulva) cv. royal crown sprayed with cycloheximide. Acta Horticulture, 669, 395–403.

    CAS  Google Scholar 

  • Jones, M. L., Chaffin, G. S., Eason, J. R., & Clark, D. G. (2005). Ethylene sensitivity regulates proteolytic activity and cysteine protease gene expression in Petunia corollas. Journal of Experimental Botany, 56, 2733–2744.

    Article  PubMed  CAS  Google Scholar 

  • Kazemi, M. (2012). Effect of cobalt, silicon, acetylsalicylic acid and sucrose as novel agent to improve vase life of Argyranthemum flowers. Trends in Applied Science Research., 7, 579–583.

    Article  Google Scholar 

  • Kazemi, M., Hadave, E., & Hekmati, J. (2011). Role of salicylic acid in decrease of membrane senescence in cut carnation flowers. American Journal of Plant Physiology, 6, 737–740.

    Google Scholar 

  • Lay-Yee, M., Stead, A. D., & Reid, M. S. (1992). Flower senescence in daylily (Hemerocallis). Physiologia Plantarum, 86(2), 308–314.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

    PubMed  CAS  Google Scholar 

  • Lukaszewski, T. A., & Reid, M. S. (1989). Bulb type flower senescence. Acta Horticulure, 261, 59–62.

    Google Scholar 

  • Mwangi, M., Chatterjee, S. R., & Bhattacharjee, S. K. (2003). Changes in the biochemical constituents of “Golden gate” cut rose petals as affected by precooling with ice cold water spray, pulsing and packaging. Journal of Plant Biology, 30, 95–97.

    Google Scholar 

  • Nelson, N. (1944). A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry, 153, 375–380.

    CAS  Google Scholar 

  • Nichols, R. (1966). Ethylene production during senescence of flowers. Journal of Horticultural Science, 41, 279–290.

    CAS  Google Scholar 

  • Nichols, R. (1973). Senescence in cut carnation flower: respiration and sugar status. Journal of Horticultural Science, 48, 111–121.

    CAS  Google Scholar 

  • Pak, C., & van Doorn, W. G. (2005). Delay of Iris flower senescence by protease inhibitors. New Phytologist, 165, 473–480.

    Article  PubMed  CAS  Google Scholar 

  • Paulin, A., & Jamain, C. (1982). Development of flowers and changes in various sugars during opening of cut carnations. Journal of American Society for Horticultural Science, 107, 258–261.

    CAS  Google Scholar 

  • Reid, M. S. (2005). Flower development: from bud to bloom. Acta Horticulturae, 669, 105–107.

    Google Scholar 

  • Rogers, H. J. (2012). From models to ornamentals: How is flower senescence regulated? Plant Molecular Biology, 82(6), 563–574.

    Article  PubMed  Google Scholar 

  • Rosen, H. (1957). A modified ninhydrin colorimetric analysis for amino acids. Archives of Biochemistry and Biophysics, 67(1), 10–15.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, S., Nukui, H., & Inokuma, T. (2005). A method for determining the vase life of cut spray carnation flowers. Journal of Applied Horticulture, 7, 8–10.

    Google Scholar 

  • Shahri, W., & Tahir, I. (2011). Physiological and biochemical changes associated with flower development and senescence in Consolida ajacis Nieuwl cv. Violet blue Frontiers of Agriculture in China, 5(2), 201–208.

    Article  Google Scholar 

  • Shahri, W., Tahir, I., Islam, S. T., & Bhat, M. A. (2011). Physiological and biochemical changes associated with flower development and senescence in so far unexplored Helleborus orientalis. cv. Olympicus. Physiology and Molecular Biology of Plants, 17(1), 33–39.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Smith, M. T., Saks, Y., & Staden, V. J. (1992). Ultrastructural changes in the petals of senescing flowers of Dianthus caryophyllus. Annals of Botany, 69, 277–285.

    Google Scholar 

  • Stead, A. D., & van Doorn, W. G. (1994). Strategies of flower senescence-A review. In R. J. Scott & A. D. Stead (Eds.), Molecular and cellular aspects of plant reproduction (pp. 215–238). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Stephenson, P., & Rubinstein, B. (1998). Characterization of proteolytic activity during senescence in daylily. Physiologia Plantarum, 10, 463–473.

    Article  Google Scholar 

  • Tayyab, S., & Qamar, S. (1992). A look into enzyme kinetics: some introductory experiments. Biochemistry Edu, 20(2), 116–118.

    Article  CAS  Google Scholar 

  • ten Have, A., & Woltering, E. J. (1997). Ethylene biosynthetic genes are differentially expressed during carnation (Dianthus caryophyllus L.) flower senescence. Plant Molecular Biology, 34, 89–97.

    Article  PubMed  Google Scholar 

  • Tripathi, S. K., & Tuteja, N. (2007). Integrated signalling in flower senescence. Plant Signaling and Behavior, 2(6), 437–445.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Doorn, W. G. (2004). Is Petal Senescence due to Sugar Starvation? Plant Physiology, 134, 35–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Doorn, W. G., & Reid, M. S. (1992). Role of ethylene in flower senescence of Gypsophola paniculata L. Postharvest Biology and Technology, 1, 265–272.

    Article  Google Scholar 

  • van Doorn, W. G., & Woltering, E. J. (2008). Physiology and molecular biology of petal senescence. Journal of Experimental Botany, 59(3), 453–480.

    Article  PubMed  Google Scholar 

  • van Doorn, W. G., Groenewegen, G., van de Pol, P., & Berkholst, E. M. (1991). Effects of carbohydrate and water status on flower opening of cut Madelon roses. Postharvest Biology and Technology, 1(1), 47–57.

    Article  Google Scholar 

  • Woltering, E. J., & van Doorn, W. G. (1988). Role of ethylene in senescence of petals: Morphological and taxonomical relationships. Journal of Experimental Botany, 208, 1605–1616.

    Article  Google Scholar 

  • Yamada, K., Ito, M., Oyama, T., Nakada, M., Maesaka, M., & Yamaki, S. (2007). Analysis of sucrose metabolism during petal growth of cut roses. Postharvest Biology and Technology, 43(1), 174–177.

    Article  CAS  Google Scholar 

  • Yang, S., & Hoffman, F. (1984). Ethylene biosynthesis and its regulation in higher plants. Annual Review of Physiology, 35, 155–189.

    Article  CAS  Google Scholar 

  • Zhou, Y., Wang, C., Hong, G. E., Hoeberichts, F. A., & Vissen, P. B. (2005). Programmed cell death in relation to petal senescence in ornamental plants. Journal of Integrative Plant Biology, 47, 641–650.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. S. Farooq for the opportunities he provided and the insights he conveyed. The authors are indebted to the Head Department of Botany for providing the facilities. Syed Sabhi Ahmad thanks University Grants Commission for providing financial assistance under UGC (BSR-JRF) scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inayatullah Tahir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar, R.A., Tahir, I. & Ahmad, S.S. Physiological and biochemical changes associated with flower development and senescence in Dianthus chinensis L. Ind J Plant Physiol. 19, 215–221 (2014). https://doi.org/10.1007/s40502-014-0104-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-014-0104-9

Keywords

Navigation