Skip to main content
Log in

Validation of Oryza2000 model under combined nitrogen and water limited situations

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Oryza2000 is an eco-physiological crop model to simulate growth and development of rice in situations of potential production, water limitations, and nitrogen limitations. In the present investigation, unlike independent situation, the applicability under conditions of both water and N limitations has been investigated using data generated from field experiments over 5 years on long and short duration rice varieties. At higher N level model performs better for TDM and yield performance long duration varieties compared to short (Rasi) and medium duration (Ajaya) varieties. On the other, overestimation of leaf area index (LAI) at all nitrogen levels was consistent indicating a need in this area for further improvement of the model. In this context, model performance was also assessed by statistical analysis (R 2, D-index and NOF). D-index is ~0.8–0.9 for two varieties at 3 nitrogen application levels for Ajaya and BPT varieties. The results indicated applicability of model Oryza2000 can be extended to rice genotypes varying in their growth periods and situations like fertilizer, water limited conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahuja, L. R., Ma, L., & Howell, T. A. (2002). Agricultural system models. Field research and technology transfer. New York, USA: CRC press.

    Book  Google Scholar 

  • Bachelet, D., & Gay, C. A. (1993). The influence of climatic change on rice yield: A comparison of four model performances. Ecological Modeling, 65, 71–93.

    Article  Google Scholar 

  • Boling, A., Tuong, T. P., Bouman, B. A. M., Murty, M. V. R., & Jatmiko, S. Y. (2000). Effect of climate, agrohydrology and management on rainfed rice production in Central Java, Indonesia: A modeling approach (pp. 55–74). In T. P. Tuong et al. (Eds.), Characterizing and understanding rainfed environments. Proceedings of the International Workshop on Characterizing and Understanding Rainfed Environments, Bali, Indonesia. 5–9 Dec. 1999. International Rice Research Institute, Los Banos, Philippines.

  • Bouman, B. A. M., & Van Laar, H. H. (2006). Description and evaluation of the rice growth model ORYZA 2000 under nitrogen-limited conditions. Agricultural Systems, 87, 249–273.

    Article  Google Scholar 

  • Bouman, B. A. M., Kropff, M. J., Tuong, T. P., Wopereis, M. C. S., ten Berge, H. F. M., & van Laar, H. H. (2001). ORYZA 2000: Modeling lowland rice. Wageningen, The Netherlands: International Rice Research Institute, Philippines and Wageningen Agricultural University.

  • Bouman, B. A. M., Van Keulen, H., Van Laar, H. H., & Rabbinge, R. (1996). The ‘School of de Wit’ crop growth simulation models: pedigree and historical overview. Agricultural Systems, 52, 171–198.

    Article  Google Scholar 

  • De Datta, S. K., & Broadbent, F. E. (1990). Nitrogen use efficiency of 24 rice genotypes in N deficient soil. Field Crops Research, 23, 81–92.

    Article  Google Scholar 

  • Dillip, K. S., Srikantha, H., Burla, C. B., Prameela, K., Kurkuri, S. R., Sangram, K. N., et al. (2007). Developing ORYZA 1N for medium- and long-duration rice: Variety selection under nonwaterstress conditions. Agronomy Journal, 99, 428–440.

    Article  Google Scholar 

  • Godwin, D. C., Singh, U., Buresh, R. J., & De Datta, S. K. (1990). Modelling of nitrogen dynamics in relation to rice growth and yield (pp. 320–325). In M. Koshino et al. (Ed.), Proceedings of the 14th International Congress of Soil Science Transactions, Kyoto, Japan. 12–18 Aug. 1990. The International Society of Soil Science, Wageningen. 4.

  • Goudriaan, T. (1986). A simple and fast numerical method for the computation of daily totals of canopy photosynthesis. Agricultural and Forest Meteorology, 43, 251–255.

    Google Scholar 

  • Goudriaan, J., & Van Laar, H. H. (1994). Simulation of crop growth processes (p. 238). Dordrecht, The Netherlands: Kluwer Academic Publishers.

  • Graf, B., Rakotobo, O., Zahner, P., Delucchi, V., & Gutierrez, A. P. (1990). A simulation model for the dynamics of rice growth and development: I. The carbon balance. Agricultural Systems, 32, 341–365.

    Article  Google Scholar 

  • Horie, T. (1987). A model for evaluating climatic productivity and water balance of irrigated rice and its applications to South East Asia. South East Asian Studies, 25, 62–74.

    Google Scholar 

  • Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., et al. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18, 235–265.

    Article  Google Scholar 

  • Kropff, M. J., van Laar, H. H., & Mathews, R. B. (Eds.). (1994). ORYZA 1, an ecophysiological model for irrigated rice production. In SARP Research Proceeding (p. 110). Wageningen, The Netherlands: International Rice Research Institute, Los Ban˜os, Philippines, and AB-DLO, TPE-WAU.

  • Matthews, R., & Wassmann, R. (2003). Modeling the impacts of climate change and methane emission reductions on rice production: A review. European Journal of Agronomy, 19, 573–598.

    Article  CAS  Google Scholar 

  • Mc Mennamy, J. A., & O’Toole, J. C. (1983). RICEMOD: A physiologically based rice growth and yield model. Los Banos, Philippines: IRRI Res. Pap. Ser. 87. International Rice Research Institute.

  • Mitchell, P. (1997). Misuse of regression for empirical validation of models. Agricultural Systems, 54, 313–326.

    Article  Google Scholar 

  • Palanisamy, S., Penning de Vries, F. W. T., Mohandass, S., Thiyagarajan, T. M., & Kareem, A. A. (1993). Simulation in pre-testing of rice genotypes in Tamil Nadu. In F. W. T. Penning de Vries, et al. (Eds.), Systems approaches for agricultural development (pp. 63–75). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Peng, S. B., Cassman, K. G., & Kropff, M. J. (1995). Relation between leaf photosynthesis and nitrogen content of field grown rice in tropics. Crop Science, 35, 1627–1630.

    Article  Google Scholar 

  • Penning de Vries, F. W. T., Jansen, D. M., ten Berge, H. F. M., & Bakema. A. (1989). Simulation of ecophysiological processes of growth in several annual crops. In Simulation Monographs, Pudoc, Wageningen; and International Rice Research Institute, Los Ban˜ os, Philippines, p. 271.

  • Roetter, R., Hoanh, C. T., & Teng, P. S. (1998). A systems approach to analyzing land use options for sustainable rural development in south and South east Asia. IRRI discussion paper series 28 (p. 110). Los Bonas, Philippines: International Rice Research Institute.

    Google Scholar 

  • Sailaja, B., Voleti, S. R., Nathawat, M. S., & Rao, N. H. (2009). Validation of Oryza 2000 Model with irrigated low land field experiment of rice. International Journal of Tropical Agriculture(IJTA), 27(1–2), 229–233.

    Google Scholar 

  • Spitters, C. J. T., Van Keulen, H., & Van Kraalingen, D. W. G. (1989). A simple and universal crop growth simulator: SUCROS 87. In R. Rabbinge, S. A. Ward, & H. H. Van Laar (Eds.), Simulation and systems management in crop protection (pp. 147–181). Wageningen, The Netherlands: Simulation Monographs, Pudoc.

    Google Scholar 

  • Sta Cruiz, P. C., & Wada, G. (1994). Genetic variation in nitrogen uptake by rice and its effects of management and soil fertility. In G. J. D. Kirk (Ed.), Rice roots: Nutrient and water use (pp. 29–41). Los Banos, Philippines: International Rice Research Institute.

    Google Scholar 

  • Swain, D. K., Bhaskar, B. C., Krishnan, P., Rao, K. S., Nayak, S. K., & Dash, R. N. (2006). Variation in yield, N uptake and N use efficiency of medium and late duration rice varieties. Journal of Agricultural Science, 144, 69–83.

    Google Scholar 

  • Tanaka, A., Navasero, S. A., Garcia, C. V., Parao, F. T., & Ramirez, E. (1964). Growth habit of the rice plant in the tropics and its effect on nitrogen response. IRRI Tech. Bull. 3. Los Baños, Philippines: International Rice Research Institute.

  • Timsina, J., & Humphreys, E. (2003). Performance and application of CERES and SWAGMAN Destiny models for rice-wheat cropping systems in Asia and Australia: A review. CSIRO land and water, technical report 16/03. CSIRO land and water, Griffith, NSW 2680, Australia, p. 57.

  • Timsina, J., & Humphreys, E. (2006). Performance of CERES Rice and CERES Wheat models in rice wheat systems—A review. Agricultural Systems, 90(2006), 5–31.

    Article  Google Scholar 

  • Van Ittersum, M. K., Leffelaar, P. A., Van Keulen, H., Kropff, M. J., Bastiaans, L., & Goudriaan, J. (2003). On approaches and applications of the Wageningen crop models. European Journal of Agronomy, 18, 201–234.

    Article  Google Scholar 

  • Van Keulen, H., & Seligman, N. G. (1987). Simulation of water use, nitrogen and growth of a spring wheat crop (p. 310). Wageningen, the Netherlands: Simulation Monograph, Pudoc.

  • Van Laar, H. H., Goudriaan, J., & Van Keulen, H. (Eds). (1997). SUCROS97: simulation of crop growth for potential and water limited production situations. Quantitaive approaches in systems analysis 14. C.T. de Wit graduate school for production ecology and AB-Dlo, Wageningen, The Netherlands, p. 479.

  • Vergara, B. S., & Chang, T. T. (1985). The flowering response of the rice plant to photoperiod—A review of literature (4th ed., p. 60). Los Banos, Manila, Philippines: International Rice Research Institute.

    Google Scholar 

  • Wada, G., & Sta Cruiz, P. C. (1989). Varietal differences in nitrogen response of rice plants with special reference to growth duration. Japanese Journal of Crop Science, 58, 732–739.

    Article  CAS  Google Scholar 

  • Wada, G., & Sta Cruiz, P. C. (1990). Nitrogen response of rice varieties with reference to nitrogen absorption at early growth stages. Japanese Journal of Crop Science, 59, 540–547.

    Article  Google Scholar 

  • Wade, L. J. (1995). Genotype by environment interaction and selection: Experiences in sorghum, and expectations for rainfed lowland rice. In P. K. Aggarwal et al. (Eds.), SARP Research Proceedings: Applications of systems approaches in plant breeding. DLO-Research Institute Agrobiology, Wageningen, the Netherlands, Department of Theoretical Production Ecology, Wageningen Agricultural University, Wagningen, The Netherlands, and International Rice Research Institute, Los Banos, Philippines, pp. 31–39.

  • Wikarmpapraharn, C., & Kositsakulchai, E. (2010). Evaluation of ORYZA 2000 and CERES-rice models under potential growth condition in the central plain of Thailand. Thai Journal of Agricultural Science, 43(1), 17–29.

    Google Scholar 

  • Wopereis, M. C. S., Bouman, B. A. M., Tuong, T. P., Ten Berge, H. F. M. & Kropff, M. J. (1996). ORYZA_W: Rice growth model for irrigated and rainfed environments. In SARP Research Proceedings. Wageningen (Netherlands); IRRI/AB-DLO, p. 159.

  • Yoshida, S., Forno, D. A., Cock, J. H., & Gomez, K. A. (1976). Laboratory manual for physiological studies of rice (3rd ed.). Los Banos, Philippines: International Rice Research Institute.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sailaja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sailaja, B., Voleti, S.R., Subrahmanyam, D. et al. Validation of Oryza2000 model under combined nitrogen and water limited situations. Ind J Plant Physiol. 18, 31–40 (2013). https://doi.org/10.1007/s40502-013-0001-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-013-0001-7

Keywords

Navigation