Skip to main content

Current Status, Challenges, and Opportunities in Rice Production

  • Chapter
  • First Online:
Rice Production Worldwide

Abstract

Rice is the staple food for nearly half the world’s population, and its continued increased production to meet the enhanced demand due to ever-increasing population faces many challenges. Per capita availability of land and water is increasing at a fast rate, and there is worldwide mass rural-to-urban movement of youth in search of better livelihood reducing the availability of farm labor. Rice is going to suffer the most due to these changes, because of its high water and labor requirements. The development of high-yielding varieties/hybrids of rice and concomitant use of high levels of fertilizer, specially nitrogen, have been the two major drivers of increased rice production in the last four decades, but overuse of fertilizer nitrogen has created environmental problems of greenhouse warming, depletion of ozone layer, and eutrophication of surface and groundwaters, and there is global concern about it. Nitrogen application rates to rice have therefore to be reduced and it may affect production. Nitrogen use efficiency in rice is lowest among the cereals. There is therefore an urgent need for developing more nitrogen use-efficient varieties and rice production technologies demanding lesser water, labor, nitrogen, and pesticides. Achieving these is going to be a Herculean task for agricultural scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adjao RT, Staatz JM (2015) Asian rice economy changes and implications for Sub-Sharan Africa. Glob Food Sec 5:50–55

    Article  Google Scholar 

  • Aggarwal N, Singh A (2015) Crop performance, nutrient uptake vis-a-vis weed suppressive ability of mechanically transplanted rice (Oryza sativa) as influenced by age of seedlings and planting density. Indian J Agron 60(2):255–260

    Google Scholar 

  • Alam S, Kamal S, Kawai S (2003) Amelioration of manganese toxicity in young rice seedlings with potassium. J Plant Nutr 26(6):1301–1314

    Article  CAS  Google Scholar 

  • Alloway BJ (2008) Zinc in soils and crop nutrition. International Zinc Association, Brussels and International Fertilizer Industry Association, Paris

    Google Scholar 

  • Anonymous (2007) Pusa 1121 proved a major hit with the farmers. Hindu Business Line, 28 Dec 2007 (Wikipedia)

    Google Scholar 

  • Anonymous (2011) Hope for hybrid rice. Chinese Daily, 21 Sept 2011

    Google Scholar 

  • Armstrong J, Armstrong W (2005) Rice-sulfide induced barriers to root radial oxygen, Fe2+ and water uptake and lateral root emergence. Ann Bot (London) 96:625–638

    Article  CAS  Google Scholar 

  • Audebert A, LT N, Kiepe P, Miller D, Berks B (eds) (2006) Iron toxicity in rice based systems in Western Africa. African Rice Center (WARDA), Cotonou, p. 175

    Google Scholar 

  • Banniza S, Holderness M (2001) Rice sheath blight-pathogen biology and diversity. Major fungal diseases of rice: recent advances, Springer Netherlands, pp. 201–211

    Google Scholar 

  • Becker M, Asch F (2005) Iron toxicity in rice-conditions and management concepts. J Plant Nutr Soil Sci 168(4):558–673

    Article  CAS  Google Scholar 

  • Beltran JC, Pannell DJ, Doole GJ (2012) Economic implications of herbicide resistance and labor costs for management of annual barnyard grass in Philippine rice farming systems. Crop Prot 31:31–39

    Article  Google Scholar 

  • Bharadwaj A, Garg S, Sondhi SK, Tanuja DS (2012) Nitrate concentration of shallow aquifer groundwater in the central districts of Punjab. J Environ Sci Eng 54(1):90–97

    Google Scholar 

  • Bi L, XiaJ LK, LiD YX (2014) Effect of long term chemical fertilization on trends of rice yield and nutrient use efficiency under double rice cultivation in sub-tropical China. Plant Soil Environ 60(12):537–543

    CAS  Google Scholar 

  • Blaise D, Venugopalan MV, Singh G (2014) Phosphorus management. In: Prasad R, Kumar D, Rana DS, Shivay YS, Tewatia RK (eds) Textbook of plant nutrient management. Indian Society of Agronomy, New Delhi, pp. 92–121

    Google Scholar 

  • Boukaew S, Prasertan P (2014) Suppression of rice sheath blight disease using a heat stable culture filtrate from Streptomyces philanti RM-1-138. Crop Prot 61:1–10

    Article  Google Scholar 

  • Bouman BAM, Peng S, Castaneda AR, Visperas RM (2005) Yield and water use of irrigated tropical aerobic rice systems. Agric Water Manag 74:87–105

    Article  Google Scholar 

  • Burgos NR, Singh V, Tseng TM, Black H, Young ND, Huang Z, Hyma KE, Gealy DR, Caicedo AL (2014) The impact of herbicide resistant rice technology on phenotypic diversity and population structure of United States weedy rice. Plant Physiol 155(3):1208–1220

    Article  CAS  Google Scholar 

  • Busconi M, Rosi D, Lorenzoni C, Baldi G, Fogher C (2012) Spread of herbicide resistant weedy rice (red rice, Oryza sativa L) after 5 years of clear field rice cultivation in Italy. Plant Biol (Stuttg) 14(5):751–759

    Article  CAS  Google Scholar 

  • Callaway E (2014) The birth of rice. Nature 514:S58–S59

    Article  PubMed  Google Scholar 

  • Carriger S, Vallee D (2007) More crop per drop. Rice Today 6(2):10–13

    Google Scholar 

  • Chauhan BS (2012) Weed ecology and weed management strategies for dry-seeded rice in Asia. Weed Tech 26(1):1–13

    Article  Google Scholar 

  • Chauhan BS, Johnson DE (2010a) The role of seed ecology in improving weed management strategies in the tropics. Adv Agron 105:221–262

    Article  Google Scholar 

  • Chauhan BS, Johnson DE (2010b) Implications of a narrow crop row spacing and delayed Echinochloa colona and Echinochloa crus-galli emergence for weed growth and crop yield loss in aerobic rice field. Field Crops Res 117:177–182

    Article  Google Scholar 

  • Chauhan BS, Johnson DE (2010c) Weedy rice (Oryza sativa L) I. Grain characteristics and growth response to competition of weedy rice variants from five Asian countries. Weed Sci 58:374–380

    Article  CAS  Google Scholar 

  • Chauhan BS, Singh RG, Mahajan G (2012) Impact of climate change on weeds in rice-wheat cropping system. Curr Sci 102(9):1254–1255

    Google Scholar 

  • Chauhan BS, Prabhujyot-Kaur MG et al (2014) Global warming and its possible impact on agriculture in India. Adv Agron 123:65–121

    Article  Google Scholar 

  • Chen JS, Gao XM, He DW, Xia WH (2000) Nitrogen contamination in the Yangtze River System, China. J Hazard Mat 73:107–117

    Article  Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW et al (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015

    Article  CAS  PubMed  Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Climate Change 3:52–58

    Article  Google Scholar 

  • Davidson EA, Kanter D (2014) Inventories and scenarios of nitrous oxide emissions. IOP Science Environ Res Letol 9 No 10 (http://iopscience.iop.org/1748-9326/9/10/105012/article)

  • De Datta SK (1981) Principles and practices of rice production. Wiley, New York

    Google Scholar 

  • Dobermann A, Fairhurst T (2000) Rice nutrient disorders and nutrient management. International Rice Research Institute, Phosphate & Potash Institute of India, Manila

    Google Scholar 

  • Dong ZH, Li J, Sun LM (2005) Nitrate contamination in the groundwater of intensive vegetable cultivation areas in Shouguang City, Shandong Province, China. J Agro-Environ Sci 24(6):1139–1144

    CAS  Google Scholar 

  • Duan SW, Zhang S, Huang HY (2000) Transport of dissolved inorganic nitrogen from the major rivers to estuaries in China. Nutr Cycl Agroecosyst 57:13–22

    Article  CAS  Google Scholar 

  • Duan YH, Zhang NM, Hong B, Chen JJ (2005) Factors influencing the N and P losses from farmland runoff in Dianchi watershed. Chin J Econ-Agric 13:116–118 (in Chinese)

    Google Scholar 

  • Fageria NK, Wander AE, Silva SC (2014) Rice (Oryza sativa) cultivation in Brazil. Indian J Agron 59(3):350–358

    Google Scholar 

  • FAO (2004) Hybrid rice for food security-fact sheet. Food and Agricultural Organization of the UN, Rome

    Google Scholar 

  • Farooq M, Kobayashi N, Wahid A, Ito O, Basar SMA (2009) Strategies for producing more rice with less water. Adv Agron 101:351–388

    Article  Google Scholar 

  • Foy RH (2005) The return of phosphorus paradigm: agricultural phosphorus and eutrophication. In: Sims JT, Sharpley AN (eds) Phosphorus in agriculture and the environment. Agronomy monograph 46. American Society of Agronomy, Madison, pp. 911–939

    Google Scholar 

  • Fuller DQ (2011) Finding plant domestication in the Indian sub-continent. Curr Anthropol 52(S4):S347–S362

    Article  Google Scholar 

  • Fuller DQ, Zheng Y, Zhao Z, Chen X, Hosoye LA, Sun GP (2009) The domestication process and domestication rate in rice: spikelet bases from the lower Yangtze. Science 323:1607–1610

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Zhang T (2010) Eutrophication in a Chinese context: understanding various physical and socio-economic aspects. Ambio 39(5–6):385–393

    Article  PubMed  PubMed Central  Google Scholar 

  • Gealy DR, Mitten DH, Rutgers JN (2003) Gene flow between red rice (Oryza sativa) and herbicide resistant rice (O. sativa) for weed management. Weed Technol 16:627–645

    Article  Google Scholar 

  • Genon JG, Dehepcee N, Delavaux B, Dufey JE, Hennebert PA (1994) Redox conditions and iron chemistry in high land swamps of Brundi. Plant and Soil 166:165–171

    Article  CAS  Google Scholar 

  • George M, Prasad R (1989) Studies on the effect of legumes on fertilizer utilization by rice using 15 N techniques in rice based multiple cropping systems. Res Dev Agric 6:115–118

    Google Scholar 

  • Gianessi L (2014) Importance of pesticides for growing rice in South and Southeast Asia. International pesticide benefits case study no 108 (October 2014), Crop Protection Research Institute, Crop Life Foundation, Washington DC (www.croplifefoundtion.org)

  • Greenland DJ (1997) The sustainability of rice farming. CABI International, Internaional Rice Research Institute, Los Banos

    Google Scholar 

  • Gross BL, Zhao Z (2014) Archaelogical and genetic insights into the origins of domesticated rice. Proc Natl Acad Sci U S A 111:6190–6197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan G, TuS LH, Yang J, Zhang T, Wen S, Wang L (2014) Phosphorus fertilization modes affect crop yield, nutrient uptake and soil biological properties in rice-wheat cropping system. Soil Sci Soc Am J 77(1):166–172

    Article  CAS  Google Scholar 

  • Gupta RK, Naresh RK, Hobbs PR, Ladha JK (2002) Adopting conservation agriculture in rice–wheat systems of the Indo-Gangetic Plains—New opportunities for saving on water. In: Bouman BAM, Hengsdijk H, Hardy B, Bindraban B, Toung TP, Ladha JK (eds) Proc Int Wkshp Water-Wise Rice Production. International Rice Research Institute, Los Baños, pp. 207–222

    Google Scholar 

  • Hafeez MM, Bouman BAM, Van de Giesen N, Vlek P (2007) Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines. Agric Water Manag 92:81–89

    Article  Google Scholar 

  • Hollier CA, Groth GE, Rush MC, Webster RK (1993) Diseases of rice. American Phytopathology Society, St Paul

    Google Scholar 

  • Hollosy F (2002) Effect of ultraviolet radiation on plant cell. Micron 33:179–197

    Article  CAS  PubMed  Google Scholar 

  • Howarth RW, Marino R (2006) Nitrogen as the liming nutrient for eutrophication in coastal marine ecosystem: evolving view over three decades. Limnol Oceanogr 51(1, part 2):364–376

    Article  CAS  Google Scholar 

  • Huang X, Kurata N, Wei X, Wang Z, Wang A, Zhao Q, Zhao Y, Liu K et al (2012) A map of rice genome reveals the origin of cultivated rice. Nature 490:497–501

    Article  CAS  PubMed  Google Scholar 

  • Huaqi W, Bouman BAM, Zhao D, Changgui W, Moya PF (2002) Aerobic rice in northern China: opportunities and challenges. In: Bouman BAM, Hengsdijk H, Hardy B, Bindraban PS, Tuong TP, Ladha JK (eds) Water-wise rice production. International Rice Research Institute, Los Banos, pp. 143–154

    Google Scholar 

  • ILO (2010) Accelerating action against child labor-Global report under the follow-up to the ILO declaration on fundamentals, principles and rights at work. International Labor Organization, Geneva

    Google Scholar 

  • IPCC (1996) Report Inter-Governmental panel on climate change of the United Nations. World Meteorological Organization, Vienna and United Nations Environment Program, Nairobi

    Google Scholar 

  • IPCC (2001) Report Inter-Governmental Panel on Climate Change of the United Nations, World Meteorological Organization, Vienna and United Nations Environment Program, Nairobi

    Google Scholar 

  • IRRI (1993) Rice Almanac ( Maclean JL, Dawe DC, Hardy B, Hettel GP eds). International Rice Research Institute, Los Banos, p 257

    Google Scholar 

  • IRRI (2006) Bringing hope, improving lives-strategies. Plan 2007–2015. International Rice Research Institute, Los Banos, p. 61

    Google Scholar 

  • Jabran K, Ehsanullah M, Hussain M, Farooq M, Yaseen UZ, Chauhan BS (2015a) Mulching reduces spikelet sterility and improves water productivity, yield, and quality of fine rice under water-saving rice production systems. J Agron Crop Sci 201:389–400. doi:10.1111/jac.12099

    Article  Google Scholar 

  • Jabran K, Ehsanullah M, Farooq M, Hussain NH, Chauhan BS (2015b) Water saving, water productivity and yield outputs of fine-grain rice cultivars under conventional and water-saving rice production systems. Exp Agric 51:567–581. doi:10.1017/S0014479714000477

    Article  Google Scholar 

  • Jaffe G (2005) Regulating transgenic crops: a comparative analysis of different regulatory processes. In: Chopra VL, Shantharam S, Sharma RP (eds) Biosafety of transgenic rice. National Academy of Agricultural Sciences, New Delhi, pp. 103–117

    Google Scholar 

  • Jagsujinda A, Patrick WH (1993) Evaluation of toxic conditions associated with oranging symptoms of rice in a flooded oxisol in Sumatra, Indonesia. Plant and Soil 152:237–243

    Article  Google Scholar 

  • Jin XC (1995) Lake eutrophication in China. In: Jin XC (ed) Lake environment in China. Oceanic Press, Beijing, pp. 267–322

    Google Scholar 

  • Jin J, Wu R, Liu R (2002) Rice production and fertilization in China. Better Crops Int 16:26–29

    Google Scholar 

  • John PS, Prasad R, Pandey RK, Buresh RJ (1989) Nitrogen economy in rice-based cropping systems through cowpea green manure or cowpea residue. Fert News 34(9):19–26

    Google Scholar 

  • Joshi MM, Ibrahim IKA, Hollis JP (1975) H2S- effects on physiology of rice plants in relation to straight head disease. Phytopathology 65:1165–1170

    Article  CAS  Google Scholar 

  • Kang KH (2010) Made for the tropics. Rice Today 9(2):34–35

    Google Scholar 

  • Kartkeyan B, Rajendran R, Murgan R, Lakshmanan E (2012) Nitrate pollution in groundwater in some rural areas of Nalgonda district, Andhra Pradesh. J Environ Sci Eng 54(1):64–70

    Google Scholar 

  • Khush GS (2005) Taxonomy, ecology and agronomy of rice cultivation vis-Ă -vis genetic engineering of rice. In: Chopra VL, Santharam S, Sharma RP (eds) Biosafety of transgenic rice. National Academy of Agricultural Sciences, New Delhi, pp. 26–37

    Google Scholar 

  • Kirk JD, Yu TR, Chaudhary FA (1990) Phosphorus chemistry in relation to water regime. In: Phosphorus requirements for sustainable agriculture in Asia and Oceania. International Rice Research Institute, Los Banos, pp. 211–223

    Google Scholar 

  • Kiss S, Simihaian M (2002) Improving efficiency of urea fertilizers by inhibition of soil urease activity. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Kumar A, Yadav DS (2001) Long-term effects of fertilizers on the soil fertility and productivity of a rice–wheat system J. Agron. Crop Sci 186:47–54.

    Google Scholar 

  • Kumar V, Ladha JK (2011) Direct seeding of rice: recent developments and future research needs. Adv Agron 111:297–413

    Article  Google Scholar 

  • Kumar V, Bellinder RR, Brainard DC, Malik RK, Gupta RK (2008) Risk of herbicide-resistant rice in India: a review. Crop Prot 27:320–329

    Article  Google Scholar 

  • Ladha JK, Kumar V, Alam MM, Sharma S, Gathala M, Chandna P, Saharawat YS, Balasubramanian V (2009) Integrating crop and resource management technologies for enhanced productivity, profitability, and sustainability of the rice-wheat system in South Asia. In: Ladha JK, Singh Y, Erenstein O, Hardy B (eds) Integrated crop and resource management in the rice–wheat system of South Asia. International Rice Research Institute, Los Baños, pp. 69–108

    Google Scholar 

  • Lafranco B (2010) Pressure in the south. Rice Today 9(3):17

    Google Scholar 

  • Lamers LPM, Govers LL, Janessen ICJM et al (2013) Sulfide as a phytotoxin-a review. Front Plant Sci 4:268, 1–14 (doi: 10.3389/fpls.213.00268)

    Google Scholar 

  • Lassey K, Harvey M (2007) Nitrous oxide: the serious side of laughing gas. Water Atmos 15:1–10

    Google Scholar 

  • Leip A, Bocchi S (2007) Contribution of rice production to greenhouse emission in Europe.Proc 4th Temperate Rice Conf, 25–28 June 2007, Novara, Italy. p 32–33

    Google Scholar 

  • Li Y, Xu L, Xiang Z, Deng L (2005) Research advances of rice planting mechanization in Japan. Trans CSAE 21(11):182–185

    Google Scholar 

  • Li P, Song A, Li Z, Fan F, Liang Y (2012) Silicon ameliorates manganese toxicity by regulating Mn transport and anti-oxidant reactions in rice (Oryza sativa L). Plant and Soil 354(1–2):409–419

    Google Scholar 

  • Lindquist BA, Koffler K, Hill JE, van Kessel C (2011) Rice field drainage affects nitrogen dynamics and management. California Agric 65(2):80–84

    Article  Google Scholar 

  • Liu JL, Liao WH, Zhang ZX et al (2007) The response of vegetable yield to phosphate fertilizer and organic manure and environmental risk assessment of phosphorus accumulated in soil. Scientia Agric Sinica 40(5):959–965

    CAS  Google Scholar 

  • Malleswara Rao SSN, Patil DV, Srihari Rao B, Reddy GR (2014) Performance evaluation of a manually operated paddy drum seeder – a cost saving technology for paddy cultivation. Agric Eng Int: CIGR J 16(1):75–83

    Google Scholar 

  • Mohapatra S (2010) Pockets of gold. 2010. Rice Today 9(2):32–33

    Google Scholar 

  • Moorman FR (1978) Morphology and classification of soils on which rice is grown. In: Soils and rice, International Rice Research Institute, Los Banos

    Google Scholar 

  • Murray-Kolb LE, Takaiwa F, Goto F, Yoshihara T, Theil EC, Beard LL (2002) Transgenic rice is a source of iron for iron-depleted rats. J Nutr 132:957–960

    CAS  PubMed  Google Scholar 

  • Narayanan DL, Saladi RN, Fox JL (2010) Ultraviolet radiation and skin cancer. Int J Dermatol 40(9):978–986

    Article  Google Scholar 

  • Nene YL (1966) Symptoms, causes and control of khaira disease of paddy. Bull Indian Phytopath Soc 3:97–101

    Google Scholar 

  • Nene YL (2012) Rice is also mentioned in Rig Veda? Asian Agri-History 16:403–409

    Google Scholar 

  • Neue HU, Sass R (1994) Trace gas emission from rice fields. In: Prinn RG (ed) Global atmospheric- biospheric chemistry, Environ Science Research, vol 48. Plenum, New York, pp. 119–148

    Google Scholar 

  • OECD/FAO (2013) OECD-FAO agricultural outlook 2011–2020, OECD publishing and food and agricultural. Organization of the UN, Rome, p. 60

    Google Scholar 

  • Oshino KK (1985) Mechanization of rice production. Econ Geog 61(4):323–331

    Article  Google Scholar 

  • Ottow JCG, Benckiser G, Watanabe I, Santiago S (1983) Multiple nutritional soil stress as the pre-requisite for ion toxicity of wetland rice. Trop Agric (Trinidad) 60:102–106

    CAS  Google Scholar 

  • Oudejans JHM (1999) Studies on IPM Policy in SE Asia: Two centuries of plant protection in Indonesia, Malaysia and Thailand, Wageningen Agric Univ Papers, Wageningen, p 99–91: 161–164

    Google Scholar 

  • Pandey A, Mai VT, Vu DQ et al (2014) Organic matter and water management to reduce methane and nitrous oxide emissions from rice fields in Vietnam. Agric Ecosyst Environ 196:137–146

    Article  CAS  Google Scholar 

  • Parashar DC et al (1994) Methane budget from Indian paddy fields. In: Minami K, Mosier A, Sass RL (eds) CH4 and N2O: global emission and controls from rice fields. National Institute of Agro-Environmental Sciences, Yokendo/Tokyo, pp. 27–39

    Google Scholar 

  • Park W, Kim S (2005) Mechanizing paddy rice cultivation in Korea. Rice is life: scientific perspectives for the 21st century, proceedings of the World Rice Research Conference Tokyo and Tsukuba, Japan, 4–7 November, p. 226.

    Google Scholar 

  • Parthasarthy N (1972) Rice breeding in Tropical Asia up to 1960. Rice Breeding. International Rice Research Institute, Los Banos, pp. 5–29

    Google Scholar 

  • Pathak H (2013) Nitrogen and climate change: Interactions, impacts, mitigation and adaptation. J Indian Soc Soil Sci 60:109–119

    Google Scholar 

  • Pathak MD, Khan ZR (1994) Insect pests of rice. International center of insect physiology and ecology. International Rice Research Institute, Los Banos

    Google Scholar 

  • Pathak H, Li C, Wassermann R, Ladha JK (2006) Simulation of nitrogen balance in rice-wheat systems of the Indo-Gangetic Plains. Soil Sci Soc Am J 70:1612–1633

    Article  CAS  Google Scholar 

  • Patrick WH Jr, Mahapatra IC (1968) Transformation and availability to rice of nitrogen and phosphorus in water logged soils. Adv Agron 20:323–359

    Article  CAS  Google Scholar 

  • Pinheiro B da S (1999). Characteristicas morphologicas da planta relacionadas a produtivadade. In (VieraNRA, SantosA B, dos Sant’Ana de. Guimeraes EP (eds) A Cultura do Arroz no Brasil. Embrapa Arroz e Feijao, Santo Antonio de Goias, Go, pp. 116–147

    Google Scholar 

  • Pinheiro B d S, Castro EM d, Guimaraes CM (2006) Sustainability and profitability of aerobic rice production in Brazil. Field Crops Res 97:34–42

    Article  Google Scholar 

  • Ponnamperuma FN (1972) The chemistry of submerged soils. Adv Agron 24:29–96

    Article  CAS  Google Scholar 

  • Potrykus I, Armstrong GA, Beyer P et al (1996) Transgenic indica rice for the benefit of less developed countries: toward fungal, insect, and viral resistance and accumulation of beta-carotene in the endosperm. In: Proceedings of third International rice genetics symposium, October1995, Manila. International Rice Research Institute, Philippines.

    Google Scholar 

  • Prabhjyot-Kaur, Hundal SS (2006) Effect of possible futuristic climate change scenarios on productivity of some kharif and rabi crops in the central agro-climatic zone of Punjab. J Agric Phys 6:21–27

    Google Scholar 

  • Prasad R (2000) A text book of rice agronomy. Jain Brothers, New Delhi

    Google Scholar 

  • Prasad R (2005) Rice-wheat cropping systems. Adv Agron 86:255–339

    Article  CAS  Google Scholar 

  • Prasad R (2007) Crop nutrition-principles and practices. New Vishal Publications, New Delhi

    Google Scholar 

  • Prasad R (2011) Aerobic rice systems. Adv Agron 111:207–255

    Article  CAS  Google Scholar 

  • Prasad R (2013) Fertilizer nitrogen, food security, health and the environment. Proc Natn Sci Acad 79(4):997–110

    Google Scholar 

  • Prasad R, Power JF (1995) Nitrification inhibitors for agriculture, health and the environment. Adv Agron 54:233–281

    Article  CAS  Google Scholar 

  • Prasad R, Shivay YS (2014) Fertilizer nitrogen for the life, agriculture and the environment. Indian J Fert 11(8):47–53

    Google Scholar 

  • Prasad R, Shivay YS (2015) Fertilizer nitrogen for the life, agriculture and the environment. Indian J Fert 11(8):47–53

    Google Scholar 

  • Prasad R, Rajale JB, Lakhdive BA (1971) Nitrification retarders and slow-release nitrogen fertilizers. Adv Agron 23:337–383

    Article  CAS  Google Scholar 

  • Prasad R, Singh S, Saxena VS, Devakumar C (1994) Coating prilled urea with neem (Azadirachta indica Juss) oil for efficient nitrogen use. Naturwissenschaften 86:538–539

    Article  Google Scholar 

  • Prasad R, Singh R, Rani A, Singh D (2000) Partial factor productivity of nitrogen and its use efficiency in rice and wheat. Fert News 45(5):63–65

    Google Scholar 

  • Prasad R, Shivay YS, Kumar D, Sharma SN, Devakumar C (2007) Neem for sustainable agriculture and the environment – a review. Proc Nat Acad Acad Sci Sect B 77:313–330

    CAS  Google Scholar 

  • Prasad R, Shivay YS, Kumar D (2014) Agronomic biofortification of cereal grains with iron and zinc. Adv Agron 125:55–91

    Google Scholar 

  • Prasad R, Shivay YS, Nene YL (2016) Asia’s contribution to evolution of world agriculture. Asian Agri-History 20(4): 233–250 (in Press)

    Google Scholar 

  • Pulver E, Jaramillo S, Moreira S, Zorilla G (2010) Catching the rains. Rice Today 9(3):14–16

    Google Scholar 

  • Rahim A, Jabbar A, Hashim AA, Khan NA (1992) Chemical control of yellow stem borer in Sindh. Pakistan J Agric Res 13(4):380–389

    CAS  Google Scholar 

  • Rahman MB, Hossain SMA, Biswas JC, Islam SA, Sarkar ABS, Rahman MA (2008) Studies on the performances of wet-seeded and transplanted Aman and Boro rice. Eco-Friendly Agric J 1:18–25

    Google Scholar 

  • Ramakrishna B, Satpathy SN, Patnaik P, Adhya TK, Rao VR, Sethunathan N (1995) Methane production in two Indian soils. Geomicrobiol J 13:193–199

    Article  Google Scholar 

  • Rath AK, Mohanty SR, Mishra S, Kumaraswamy S, Ramakrishna B, Sethunathan N (1999) Methane production in unamended and straw-amended soil at different moisture levels. Biol Fertil Soils 28:145–149

    Article  CAS  Google Scholar 

  • Ravishankara AR, Daniel JS, Portman RW (2009) Nitrous oxide (N2O): the dominant ozone- depleting substance emitted in the 21st century. Science 326:123–125

    Article  CAS  PubMed  Google Scholar 

  • Reddy RNS, Prasad R (1975) Studies on mineralization of urea, coated urea and nitrification inhibitor treated urea. J Soil Sci 36:304–312

    Article  Google Scholar 

  • Rickman J (2012) Humans and machines. Rice Today 11(2):28–29

    Google Scholar 

  • RKB (2015) Rural knowledge Bank. International Rice Research Institute, Los Banos (via internet)

    Google Scholar 

  • Roberts JE (2011) Ultraviolet radiation as a risk factor for cataract and macular degeneration. Eye Contact Lens 37(4):246–249

    Article  PubMed  Google Scholar 

  • Robinson DF (2010) Confronting biopiracy: challenges and international database. Earthscan, p. 47

    Google Scholar 

  • Rubin JS (2004) The maker’s diet. Penguin, New York

    Google Scholar 

  • Sample EC, Sopex RJ, Racz CJ (1986) Reactions of phosphate fertilizers in soils. In: Khasawneth FE, Sample EC, Kamprath EJ (eds) The role of phosphorus in agriculture, 2nd print. American Society of Agronomy, and Soil Science Society of America, Madison

    Google Scholar 

  • Sanders BD, Samson M, Buresh RJ (2014) Methane and nitrous oxide emissions from flooded rice fields as affected by water and straw management between rice crops. Geoderma 235:355–362

    Article  CAS  Google Scholar 

  • Sang T, Ge S (2013) Understanding rice domestication and implications for cultivar improvement. Curr Opin Plant Biol 16:139–146

    Article  PubMed  Google Scholar 

  • Santana MR (2010) Shift to rice. Rice Today 9(3):16

    Google Scholar 

  • Sass RL, Fisher FM Jr, Harcombe PA, Turner FT (1990) Mitigation of methane emssions from rice fields: possible adverse effects of incorporated rice straw. Global Biogeochem Cycles 5:275–287

    Article  Google Scholar 

  • Sass RL, Fisher FM Jr, Ding A (1999) Exchange of methane from rice fields: national, regional and global budgets. J Geophys Res 104(D21):26943–26951

    Article  CAS  Google Scholar 

  • Schindler DW (1974) Eutrophication and recovery in experimental lakes: implications for lake management. Science 184:897–899

    Article  CAS  PubMed  Google Scholar 

  • Sekhon GS, Brar MS, Subba Rao A (1992) Potassium in some Benchmark soils of India. Potash Research Institute of India, Gurgaon

    Google Scholar 

  • Shah T (2005) Groundwater and human development: Challenges and opportunities in livelihoods and environment. Water Sci Technol 51:27–37

    CAS  PubMed  Google Scholar 

  • Shah T (2007) The groundwater economy of South Asia: An assessment of size, significance and socio-ecological impacts. In: Giordano M, Villholth KG (eds) The agricultural groundwater revolution: opportunities and threats to development. CABI International, Oxfordshire, pp. 7–36

    Google Scholar 

  • Shah T, Molden D, Sakthivadivel R, Seckler D (2000) The global groundwater situation: overview of opportunities and challenges. International Water Management Institute (IWMI), Colombo

    Book  Google Scholar 

  • Sharma SN, Prasad R (1999) Effect of Sesbania green manuring and mungbean residue incorporation in productivity and nitrogen uptake of a rice-wheat cropping systems. Bioresource Tech 67:171–175

    Article  CAS  Google Scholar 

  • Sharma PK, Bhushan L, Ladha JK, Naresh PK, Gupta RK, Balasubramanian BV, Bouman BM (2002a) Crop water relations in rice–wheat cropping under different tillage systems and water management practices in amarginally sodic, medium textured soil. In: Bouman BAM, Hengsdijk H, Hardy B, Bindraban PS, Tuong TP, Ladha JK (eds) Water-wise rice production. International Rice Research Institute, Los Banos, pp. 223–235

    Google Scholar 

  • Sharma SN, Bohra JS, Singh PK, Srivastava RK (2002b) Effect of tillage and mechanization on production potential of rice (Oryza sativa)–wheat (Triticum aestivum) cropping system. Indian J Agron 47(3):305–310

    Google Scholar 

  • Sharma PK, Ladha JK, Bhushan L (2003) Soil physical effects of puddling in rice-wheat cropping systems. In: Ladha JK, Hill JE, Duxbury JM, Gupta RK, Buresh RJ (eds) Improving the Productivity and Sustainability of Rice-Wheat Systems: Issues and Impacts. ASA Special Publication 65, Madison, pp. 97–113

    Google Scholar 

  • Sharma P, Tripathi RP, Singh S, Kumar R (2004) Effects of tillage on soil physical properties and crop performance under rice-wheat system. J Indian Soc Soil Sci 62:12–16

    Google Scholar 

  • Sharma SN, Prasad R, Shivay YS, Dwivedi MK, Kumar S, Davari MR, Ram M, Kumar D (2010) Relative efficiency of diammonium phosphate and mussoorie phosphate rock on productivity and phosphorus balance in a rice-rape seed–mungbean cropping system. Nutr Cycl Agroecocyst 86:199–209

    Article  CAS  Google Scholar 

  • Shaviv A (2001) Advances in controlled-release fertilizers. Adv Agron 71:1–49

    Article  CAS  Google Scholar 

  • Singh VP (2000) Aromatic rices. In: Singh RK, Singh US, Khush GS (eds) The basmati rices of India. Oxford & IBH, New Delhi, pp. 135–156

    Google Scholar 

  • Singh K, Sharma HC, Sarangi SK, Sudhakar PC (2003) Iron nutrition in rice. Fert News 48(2):21–31

    Google Scholar 

  • Singh A, Singh VK, Singh SP et al (2012) Molecular breeding for the development of multiple disease resistance in Basmati rice. AoB Plants. 2012:pls029. 10.1093/aobpla/pls029. Epub 2012 Nov 2)

  • Singh VK, Dwivedi BS, Tiwari KN, Majumdar K, Rani M, Singh SK, Timsina J (2014) Optimizing nutrient management strategies for rice–wheat system in the Indo-Gangetic Plains of India and adjacent region for higher productivity, nutrient use efficiency and profits. Field Crops Res 164:30–44

    Article  Google Scholar 

  • Smil V (2002) Phosphorus in the environment: natural flows and the human interferences. Annu Rev Energy Environ 25:53–88

    Article  Google Scholar 

  • Souza C (2005) Pilots take to the air to plant rice crops. AgAlert May 18:2005

    Google Scholar 

  • Stein AJ (2010) Global impact of human mineral nutrition. Plant and Soil 335:133–154

    Article  CAS  Google Scholar 

  • Suh JP, Jeung JU, Noh TH et al (2013) Development of breeding lines with three pyramidad resistance genes that confer broad spectrum bacterial blight resistance and their molecular analysis in rice. Rice 6.5 (11 ages) (http://thericejournal.com/content/6/1/5)

  • Sun B, Wang XX, Zhang TL (2003) Influencing factors of the nutrient leaching in red soils. J Agro-Environ Sci 22(3):257–262

    CAS  Google Scholar 

  • Swaminathan MS (1984) Rice in 2000 AD. report of the national relevance no. 1. Indian National Science Academy, New Delhi, p. 23

    Google Scholar 

  • Synder CS, Slaton NA (2001) Rice production in the United States-an overview. Better Crops 85(3):3–7

    Google Scholar 

  • Takahashi M, Nakanishi S, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using Barley nicotianamine aminotransferase genes. Nat Biotechnol 19:466–469

    Article  CAS  PubMed  Google Scholar 

  • Tan L (2015) Global fertilizer outlook-8. China fertilizer industry struggling because of overcapacity. The Progressive Farmer, Jan 9, 2015

    Google Scholar 

  • Tanaka A, Ranjit P, Mullariyawa RP, Yasu T (1968) Possibility of H2S induced iron toxicity in rice plants. Soil Sci Plant Nutr 14:1–6

    Article  CAS  Google Scholar 

  • Tandon HLS, Sekhon GS (1988) Potassium research and agricultural production in India. Fertilizer Development & Consultation Organization, New Delhi

    Google Scholar 

  • Thakur AK, Roychowdhury S, Kundu DK, Singh R (2004) Evaluation of planting methods in irrigated rice. Arch Agron. Soil Sci 50:631–640

    Google Scholar 

  • Thomson AJ, Gianopoulos G, Pretty J, Baggs EM, Richardson DJ (2011) Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos Trans R Soc Lond Biol Sci 367(1593):1157–1168

    Article  CAS  Google Scholar 

  • Tian H, Chen G, Lu Ch et al (2015) Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes. Ecosyst Health Sustain 1 art 4 (http://dx.doi.10.1890/EHS14-0015.1)

    Google Scholar 

  • Timmer P (2010) Food security in Asia and the changing role of rice. The Asia Foundation Occasional Paper No. 4

    Google Scholar 

  • Tiwari KN (2014) Potassium management. In: Prasad R, Kumar D, Rana DS, Shivay YS, Tewatia RK (eds) A textbook of plant nutrient management. Indian Society of Agronomy, New Delhi, pp. 122–143

    Google Scholar 

  • Towprayoon S, Smakgahn K, Poonkaew S (2005) Mitigation of methane and nitrous oxide emissions from drained rice fields. Chemosphere 59(11):1547–1556

    Article  CAS  PubMed  Google Scholar 

  • Trenbath KE, Dai A, van der Schrier G et al (2014) Global warming and changes in drought. Nat Climate Change 4:17–22

    Article  Google Scholar 

  • Trenkel M (1997) Controlled-release and stabilized fertilizers. International Fertilizer Industry Association, Paris, p. 151

    Google Scholar 

  • Tripathi RP, Sharma P, Singh S (2005) Tillage index: an approach to optimize tillage in rice-wheat system. Soil Till Res 80:125–137

    Article  Google Scholar 

  • Tuong TP, Bouman BAM (2003) Rice production in water-scarce environments. In: Kijne JW, Barker R, Molden D (eds) Water productivity in agriculture: limits and opportunities for improvements. CABI Publishing, Cambridge, pp. 53–67

    Chapter  Google Scholar 

  • Tuong TP, Bouman BAM, Mortimer M (2004) More rice, less water—Integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. In “Proceedings of the 4th International Crop Science Congress, 26 September–1October 2004, Brisbane, Australia on “New directions for a diverse planet” (www.cropscience.org.au.)

  • USDA (2013) USDA Agricultural Projections to 2022. Outlook No OCE-131, US Department of Agriculture, Maryland, p. 105

    Google Scholar 

  • USGS (2008) Mineral commodity summaries and potash, January 2008. US Geological Survey, Washington DC

    Google Scholar 

  • Ussiri D, Lal R (2012) Soil emission of nitrous oxide and its mitigation. Springer-Verlaag, Netherland, p. 395

    Google Scholar 

  • Van-Kauwenbergh SJ, Stewart M, Mikkelsen R (2013) World reserves of phosphate rocks and unfolding a dynamic story. Better Crops 97(3):18–20

    Google Scholar 

  • Vencill WK, Nichols RL, Webster TM et al (2012) Herbicide resistance toward an understanding of resistance development and impact of herbicide-resistance crops. Weed Sci 60(Spl):2–30

    Article  CAS  Google Scholar 

  • Virmani SS, Siddique EA, Muralidharan K (1997) Advances in hybrid rice technology. International Rice Research Institute, Manila

    Google Scholar 

  • Vughan DA, Lu B, Tomooka N (2008) The evolving story of rice evolution. Plant Sci 174(4):394–408

    Article  CAS  Google Scholar 

  • Wailes EJ and Chavez EC (2012) World rice outlook-International rice baseline with deterministic and stochastic projections 2012–2021. Department of Agricultural Economics and Agribusiness, University of Arkansas, Fayetteville

    Google Scholar 

  • Wang MX, Dai A, Huang J et al (1994) Sources of methane in China. In: Minami K, Mosier A, RL S (eds) CH4 and N2O: global emission and controls from rice fields. National Institute of Agro-Environmental Sciences, Yokendo/Tokyo, pp. 9–26

    Google Scholar 

  • Wassmann R, Dobermann A (2007) Climate change adaptation through rice production in regions with high poverty levels. ICRISAT J Agric Res 4(1):1–24

    Google Scholar 

  • Wassmann R, Jagdish SVK, Sumfleth K et al (2009) Rapid vulnerability of climate change impacts on Asian rice production and scope for adoption. Adv Agron 102:91–133

    Article  Google Scholar 

  • WEF (2011) Realizing a new vision for agriculture: a road map for stakeholders. World Economic Forum, Switzerland, p. 29

    Google Scholar 

  • Wong HS, Morooka Y. (1996). Economy of direct seeding rice farming. Recent advances in Malaysian Rice Production. Muda Agricultural Development Authority and Japan: Japan International Research Center for Agricultural Sciences, Malaysia, pp. 275–287

    Google Scholar 

  • Wongpornchai S, Sriseadka T, Choonvisase S (2003) Identification and quantification of the rice aroma compound 2-acetyl-1-pyrolline in bread flowers (Vallaris glabr Ktze). J Agric Food Chem 51(2):457–462

    Article  CAS  PubMed  Google Scholar 

  • Workman D (2015) Rice exports by country. World’s Top Exports (WTEx), 21 August 2015 (via internet)

    Google Scholar 

  • World Bank-IDA (2015). http://data.worldbank.org/

  • Xia Y, Yan X (2012) Ecologically optimum nitrogen application rates in rice cropping in the Taihu Lake region of China. Sustain Sci 7:33–44

    Article  Google Scholar 

  • Xia TX, Li WC, Pan ZJ (2008) Risk assessment on soil environment quality and losses of nitrogen and phosphorus from the gravel soils under different farming practices in the watershed of Lake Fuxian. J Lake Sci 20:110–116

    Article  CAS  Google Scholar 

  • Xu L, Yang M, Brian LS (2011) System of field operations for double-cropped paddy rice production mechanization in South China. Proc Agric Biosyst Eng Conf. Paper 32. (http://lib.dr.iastate.edu/abe_eng_conf/32)

  • Yagi K, Tsuruta H, Minami K, Chairoj P, Chotikul W (1994) Methane emission from Japanese and Thai fields. In: Minami K, Mosier A, Sass RL (eds) CH4 and N2O: global emission and controls from rice fields. National Institute of Agro-Environmental Sciences, Yokendo/Tokyo

    Google Scholar 

  • Yamaguchi J (1999) Sulphur deficiency of rice plants in the Lower Volta Area, Ghana. Soil Sci Plan Nutr 45(2):367–373

    Article  CAS  Google Scholar 

  • Ye X, Al-babili S, Kloti A, Zhang J, Lucca P, Beter P, Potrykus I (2000) Engineering the pro-vitamin A (beta carotene) biosythesis pathway into (carotenoid free) rice endosperm. Science 287:303–305

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Struik PC (2008) Applying modelling experiences from the past to shape crop system biology: the need to converge crop physiology and functional genomics. New Phytol 179(3):629–642

    Article  CAS  PubMed  Google Scholar 

  • Zafar Y. 2015. Genetic diversity of rice in Pakistan. National Institute of Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan; Available online: http://ec.europa.eu/agriculture/analysis/external/basmati/rice_pakistan_zafar_en.pdf.

  • Zhang F, Zhang W, Fan M, Wang J (2007a) Improving fertilizer use efficiency through management practices-Chinese experience. The Fertilizer Association of India Annual Seminar Papers, New Delhi

    Google Scholar 

  • Zhang ZJ, Jy Z, He R, Wang ZD, Zhu YM (2007b) Phosphorus interaction in floodwater of paddy field during rice growing season in Tai Lake Basin. Environ Pollut 145:425–433

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Ma W, Ji Y, Fan M, Oenema O, Zhang F (2008) Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutr Cycl Agroecosyst 80:131–144

    Article  Google Scholar 

  • Zhang G, Siyu, G, Jumai L, Minggang X (2010) The relationship between fertilizer and yield of high-yield paddy in middle and lower reaches of Yangtze river. Soil Fert Sci China 1:75–80.

    Google Scholar 

  • Zhao DL, Atlin GN, Amante M, Cruz TS, Kumar A (2010) Developing aerobic rice cultivars for water-short irrigated and drought prone rainfed areas in the tropics. Crop Sci 50:2268–2276

    Article  Google Scholar 

  • Zhou MJ, Shen ZL, Yu RC (2008) Response of a coastal phytoplankton community to increased nutrients from Changjiang (Yangtze) River. Continental Shelf Res 28:1483–1489

    Article  Google Scholar 

  • Zhu JP, Chang ZZ, Zheng JC, Chen LG (2007) Analysis on nitrogen and phosphorus losses and economic returns of major cropping systems in Tai Lake region. Jiangsu Agri Sci 2007(3):612–613 (in Chinese)

    Google Scholar 

  • Zou J, Hung Y, Jiang J, Zheng X, Saas RL (2005) A 3-year field measurement of methane and nitrous oxide emission from rice paddies in China: effects of water regime, crop residue and fertilizer application. Global Biogeochem Cycles 19:GB2012. doi:10.1029/2004GB002401

    Article  CAS  Google Scholar 

  • Zuk-Golaszewska K, Upadhyay MK, Golaszweski G (2003) The effect of UVB radiation on plant growth and development. Plant Cell Environ 49(3):135–140

    Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Prasad, R., Shivay, Y.S., Kumar, D. (2017). Current Status, Challenges, and Opportunities in Rice Production. In: Chauhan, B., Jabran, K., Mahajan, G. (eds) Rice Production Worldwide. Springer, Cham. https://doi.org/10.1007/978-3-319-47516-5_1

Download citation

Publish with us

Policies and ethics