Skip to main content

Advertisement

Log in

Complex dynamics of an epidemic model with vaccination and treatment controls

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper describes the dynamical behavior of an epidemic model in the presence of vaccination and treatment controls. In the first part of our analysis we study both the local as well as global dynamics of the deterministic model. Next in the second part of our analysis we modify the model with an additional perturbation around the endemic equilibrium and study the asymptotically mean square stability of the modified system. Some numerical simulations are carried out on both the deterministic and the modified models to support our analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bernoulli D (1766) Essai d’une nouvelle analyse de la mortalite causee par la petite verole. Mem. math. phy. acad. roy. sci. Paris

  2. Kermack WO, McKendrik AG (1927) Contribution to the mathematical theory of epidemics. Proc R Soc Lond Ser A 115:700–721

    Article  MATH  Google Scholar 

  3. Bowong S, Kurths J (2012) Modeling and analysis of the transmission dynamics of tuberculosis without and with seasonality. Nonlinear Dyn 67:2027–2051

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson RM, May RM (1991) Infectious diseases in humans: dynamics and control. Oxford University Press, Oxford

    Google Scholar 

  5. Brauer F, van den Driessche P, Wu J (eds) (2008) Mathematical epidemiology. Lecture notes in mathematics. Springer, Berlin

  6. Kar TK, Jana S, Ghorai A (2013) Effect of isolation in an infectious disease. Int J Ecol Econ Stat 29(2):87–106

    MathSciNet  Google Scholar 

  7. Rohani P (2008) Modeling infectious diseases in humans and animals. Princeton University Press, Princeton

    MATH  Google Scholar 

  8. Xia C, Wang L, Sun S, Wang J (2012) An SIR model with infection delay and propagation vector in complex networks. Nonlinear Dyn 69:927–934

    Article  MathSciNet  Google Scholar 

  9. Capasso V (1993) Mathematical structures of epidemic systems. Lecture notes in biomath. Springer, Berlin

    Book  Google Scholar 

  10. Murray JD (2002) Mathematical biology. Springer, Berlin

    MATH  Google Scholar 

  11. Zhou X, Cui J (2011) Analysis of stability and bifurcation for an SEIV epidemic model with vaccination and nonlinear incidence rate. Nonlinear Dyn 63:639–653

    Article  MathSciNet  Google Scholar 

  12. van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  MATH  Google Scholar 

  13. Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases. Model building, analysis and interpretation. Wiley, Chichester

    MATH  Google Scholar 

  14. Pang J, Cui J, Hui J (2012) The importance of immune responses in a model of hepatitis B virus. Nonlinear Dyn 67:723–934

    Article  MathSciNet  MATH  Google Scholar 

  15. Mushayabasa S, Bhunu CP (2011) Modelling the effects of heavy alcohol consumption on the transmission dynamics of gonorrhea. Nonlinear Dyn 66:695–706

    Article  MATH  Google Scholar 

  16. Kar TK, Mondal PK (2011) Global dynamics and bifurcation in delayed SIR epidemic model. Nonlinear Anal Real World Appl 12:2058–2068

    Article  MathSciNet  MATH  Google Scholar 

  17. Kar TK, Jana S (2013) A theoretical study on mathematical modelling of an infectious disease with application of optimal control. BioSystems 111:37–50

    Article  Google Scholar 

  18. Thomasey DH, Martcheva M (2008) Serotype replacement of vertically transmitted diseases through perfect vaccination. J Biol Syst 16(2):255–277

    Article  MATH  Google Scholar 

  19. Arino J, Cooke KL, van den Driessche P, Velasco-Hernandez J (2004) An epidemiology model that includes a leaky vaccine with a general waning function. Dyn Syst Ser B 4(2):479–495

    MathSciNet  MATH  Google Scholar 

  20. Buonomo B, Lacitignola D (2011) On the backward bifurcation of a vaccination model with nonlinear incidence. Nonlinear Anal Model Control 16(1):30–46

    MathSciNet  MATH  Google Scholar 

  21. Wang W (2006) Backward bifurcation of an epidemic model with treatment. Math Biosci 201:58–71

    Article  MathSciNet  MATH  Google Scholar 

  22. Cai L, Li X, Ghosh M, Guo B (2009) Stability analysis of an HIV/AIDS epidemic model with treatment. J Comput Appl Math 229:313–323

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang X, Liu X (2009) Backward bifurcation and global dynamics of an SIS epidemic model with general incidence rate and treatment. Nonlinear Anal Real World Appl 10:565–575

    Article  MathSciNet  MATH  Google Scholar 

  24. Eckalbar JC, Eckalbar WL (2011) Dynamics of an epidemic model with quadratic treatment. Nonlinear Anal Real World Appl 12(1):320–332

    Article  MathSciNet  MATH  Google Scholar 

  25. Gumel AB, Moghadas SM (2003) A qualitative study of a vaccination model with non-linear incidence. Appl Math Comput 143:409–419

    MathSciNet  MATH  Google Scholar 

  26. Qiu Z, Feng Z (2010) Transmission dynamics of an influenza model with vaccination and antiviral treatment. Bull Math Biol 72(1):1–33

    Article  MathSciNet  MATH  Google Scholar 

  27. Hu Z, Ma W, Ruan S (2012) Analysis of SIR epidemic models with nonlinear incidence rate and treatment. Math Biosci 238(1):12–20

    Article  MathSciNet  MATH  Google Scholar 

  28. Kar TK, Jana S (2013) Application of three controls optimally in a vector borne disease—a mathematical study. Commun Nonlinear Sci Numer Simul 18:2868–2884

    Article  MathSciNet  MATH  Google Scholar 

  29. Brauer F (2011) Backward bifurcations in simple vaccination/treatment models. J Biol Dyn 5(5):410–418

    Article  MathSciNet  MATH  Google Scholar 

  30. Tchuenche JM, Khamis SA, Agusto FB, Mpeshe SC (2011) Optimal control and sensitivity analysis of an influenza model with treatment and vaccination. Acta Biotheor 59(1):1–28

  31. Hamer WH (1906) Epidemic disease in England. Lancet 1: 733–739

    Google Scholar 

  32. Ma Z, Li J (eds) (2009) Dynamical modeling and analysis of epidemics. World Scientific, Singapore

  33. Junjie C (2004) An sirs epidemic model. Appl Math A J Chin Univ 19(1):101–108

    Article  MathSciNet  MATH  Google Scholar 

  34. Okosun KO, Ouifki R, Marcus N (2011) Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity. Biosystems 106:136–145

    Article  Google Scholar 

  35. Sahu GP, Dhar J (2012) Analysis of an SVEIS epidemic model with partial temporary immunity and saturation incidence rate. Appl Math Model 36:908–923

    Article  MathSciNet  MATH  Google Scholar 

  36. Song L-P, Jin Z, Sun G-Q (2011) Reinfection induced disease in a spatial SIRI model. J Biol Phys 37:133–140

    Article  Google Scholar 

  37. Buonomo B, Rionero S (2010) On the Lyapunov stability for SIRS epidemic models with general nonlinear incidence rate. Appl Math Comput 217:4010–4016

    MathSciNet  MATH  Google Scholar 

  38. Birkoff G, Rota GC (1982) Ordinary differential equations. Ginn, Boston

    Google Scholar 

  39. Guckenheimer G, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, New York

    Book  MATH  Google Scholar 

  40. Li MY, Muldowney JS (1996) A geometric approach to global stability problems. SIAM J Math Anal 27(4):1070–1083

    Article  MathSciNet  MATH  Google Scholar 

  41. Martin RH Jr (1974) Logarithmic norms and projections applied to linear differential systems. J Math Anal Appl 45:432–454

    Article  MathSciNet  MATH  Google Scholar 

  42. Lahrouz A, Omari L, Kiouach D (2011) Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model. Nonlinear Anal Model Control 16(1):69–76

    MathSciNet  MATH  Google Scholar 

  43. Sarkar RR, Banerjee S (2005) Cancer self remission and tumor stability a stochastic approach. Math Biosci 196:65–81

    Article  MathSciNet  MATH  Google Scholar 

  44. Huang Z, Yang Q, Cao J (2011) Complex dynamics in a stochastic internal HIV model. Chaos Solitons Fractals 44:954–963

    Article  MathSciNet  MATH  Google Scholar 

  45. Beretta E, Kolmanovskii V, Shaikhet L (1998) Stability of epidemic model with time delays influenced by stochastic perturbations. Math Comput Simul 45:269–277

    Article  MathSciNet  MATH  Google Scholar 

  46. Mao X (2007) Stochastic differential equation and application (second edition)

  47. Afanasev VN, Kolmanowskii VB, Nosov VR (1996) Mathematical theory of control systems design. Kluwer, Dordrecht

    Book  Google Scholar 

  48. Cai L, Li X (2008) A note on global stability of an SEI epidemic model with acute and chronic stages. Appl Math Comput 196:923–930

    MathSciNet  MATH  Google Scholar 

  49. Li X, Wanga J, Ghosh M (2010) Stability and bifurcation of an SIVS epidemic model with treatment and age of vaccination. Appl Math Model 34:437–450

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research of T. K. Kar is partially supported by the Council of Scientific and Industrial Research (CSIR) (Grant No.: 25(0224)/14/EMR II, dated December 2, 2014). Further, the authors are very much grateful to the anonymous reviewers for their constructive comments and helpful suggestions to improve the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soovoojeet Jana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, S., Haldar, P. & Kar, T.K. Complex dynamics of an epidemic model with vaccination and treatment controls. Int. J. Dynam. Control 4, 318–329 (2016). https://doi.org/10.1007/s40435-015-0189-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-015-0189-7

Keywords

Navigation