Skip to main content

Advertisement

Log in

Topography and surface energy of dental implants: a methodological approach

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The surfaces of dental implants are generally modified as an attempt to improve osseointegration. Three surface characteristics of implants are regarded as relevant in the process of bone formation: chemical composition, surface energy and topography. The topography of threaded implants is difficult to measure by conventional equipments with mechanical contact, so optical measuring equipments are preferred. However, implants with large thread angles may have the topography overestimated by the optical measuring equipment due to errors caused by scattering of the reflected light. This paper proposes a new methodology to measure implants with internal thread angle larger than 70° via laser interferometry, positioning the implant with an inclination angle in relation to the equipment base. The results were compared with results for flat discs, produced with the same surface treatment of the implant. Regarding surface energy of implants, most studies use measurements for flat discs, but it is questionable whether the results represent the implant itself. Here, two new methods were proposed to characterize the surface energy of real implants: a qualitative method related to the phenomenon of capillarity and a quantitative method with different liquids of known surface tension. It was found that the topography of the thread flanks is considerably different from the topography of the discs and it is believed that the geometry of the implant influences the surface treatment. The proposed quantitative methodology to analyze the surface energy allowed to detect differences between two commercial implants tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Coelho PG, Granato R, Marin C, Teixeira HS (2011) The effect of different implant macrogeometries and surface treatment in early biomechanical fixation: an experimental study in dogs. J Mech Behav Biomed Mater 27(4):1974–1981

    Article  Google Scholar 

  2. Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implant Res 20:172–184. doi:10.1111/j.1600-0501.2009.01775.x

    Article  Google Scholar 

  3. Elias CN, Rocha FA, Nascimento AL, Coelho PG (2012) Influence of implant shape, surface morphology, surgical technique and bone quality on the primary stability of dental implants. J Mech Behav Biomed Mater 16:169–180

    Article  Google Scholar 

  4. Zhao G, Raines AL, Wieland M, Schwartz Z, Boyan BD (2007) Requirement for both micron and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography. Biomaterials 28(18):2821–2829. doi:10.1016/j.biomaterials.2007.02.024

    Article  Google Scholar 

  5. Kieswetter K, Schwartz Z, Dean DD, Boyan BD (1996) The role of implant surface characteristics in the healing of bone. Crit Rev Oral Biol Med 7(4):329–345. doi:10.1177/10454411960070040301

    Article  Google Scholar 

  6. Marmur A (2009) A guide to the equilibrium contact angles maze. In: Contact angle, wettability and adhesion, Vol. 6. CRC Press, pp 3–18. doi:10.1201/b12247-3

  7. Bruzzone AAG, Costa HL, Lonardo PM, Lucca DA (2008) Advances in engineered surfaces for functional performance. CIRP Ann Manuf Technol 57(2):750–769. doi:10.1016/j.cirp.2008.09.003

    Article  Google Scholar 

  8. Rupp F, Gittens RA, Scheideler L, Marmur A, Boyan BD, Schwartz Z, Geis-Gerstorfer J (2014) A review on the wettability of dental implant surfaces I: theoretical and experimental aspects. Acta Biomater 10(7):2894–2906. doi:10.1016/j.actbio.2014.02.040

    Article  Google Scholar 

  9. ISO (1997) Surface Texture: Profile Method—Terms Definitions and Surface Texture Parameters. Geometrical Product Specifications (GPS) International Standard ISO 4287

  10. Stout KJ, Blunt L, Dong WP, Mainsah E, Luo N, Mathia T (2000) Development of methods for the characterisation of roughness in three dimensions, 1st edn. Penton Press, Luxembourg

    Google Scholar 

  11. Wennerberg A, Albrektsson T (2000) Suggested guidelines for the topographic evaluation of implant surfaces. Int J Oral Maxillofac Implants 15:331–344

    Google Scholar 

  12. Vercaigne S, Wolke JGC, Naert I, Jansen JA (1998) The effect of titanium plasma-sprayed implants on trabecular bone healing in the goat. Biomaterials 19:1093–1099

    Article  Google Scholar 

  13. Thomas TR (1999) Rough Surfaces. 2 Sub edn. World Scientific Publishing Company, London

  14. Wennerberg A, Ohlsson R, Rosén BG, Andersson B (1996) Characterizing three-dimensional topography of engineering and biomaterial surfaces by confocal laser scanning and stylus techniques. Med Eng Phys 18(7):548–556. doi:10.1016/1350-4533(95)00005-4

    Article  Google Scholar 

  15. Rosa MB, Albrektsson T, Francischone CE, Schwartz Filho HO, Wennerberg A (2012) The influence of surface treatment on the implant roughness pattern. J Appl Oral Sci 20(5):550–555

    Article  Google Scholar 

  16. Naves M, Menezes H, Magalhães D, Ferreira J, Ribeiro S, de Mello J, Costa H (2015) Effect of Macrogeometry on the Surface Topography of Dental Implants. Int J Oral Maxillofac Implants 30(4):789–799

    Article  Google Scholar 

  17. Albrektsson T, Brånemark PI, Hansson HA, Lindström J (1981) Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52(2):155–170. doi:10.3109/17453678108991776

    Article  Google Scholar 

  18. Solarius I (2016) SolarScan-Laser/Optical measurement with the surface profilometer SolarScan. http://www.solarius-inc.com/images/pdf/solarscan_datasheet.pdf. Accessed 14 June 2016

  19. Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87. doi:10.1098/rstl.1805.0005

    Article  Google Scholar 

  20. Rupp F, Scheideler L, Eichler M, Geis-Gerstorfer J (2011) Wetting behavior of dental implants. Int J Oral Maxillofac Implants 26:1256–1266

    Google Scholar 

  21. Krishnan A, Liu Y-H, Cha P, Woodward R, Allara D, Vogler EA (2005) An evaluation of methods for contact angle measurement. Colloids Surf B 43(2):95–98. doi:10.1016/j.colsurfb.2005.04.003

    Article  Google Scholar 

  22. Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry, 3rd edn. Marcel Dekker, New York

    Book  Google Scholar 

  23. Neumann AW, Good RJ, Hope CJ, Sejpal M (1974) An equation-of-state approach to determine surface tensions of low-energy solids from contact angles. J Colloid Interface Sci 49(2):291–304. doi:10.1016/0021-9797(74)90365-8

    Article  Google Scholar 

  24. Wu S (1971) Calculation of interfacial tension in polymer systems. J Polym Sci Part C Polym Symp 34(1):19–30. doi:10.1002/polc.5070340105

    Article  Google Scholar 

  25. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13(8):1741–1747. doi:10.1002/app.1969.070130815

    Article  Google Scholar 

  26. Decker EL, Garoff S (1996) Using vibrational noise to probe energy barriers producing contact angle hysteresis. Langmuir 12(8):2100–2110. doi:10.1021/la951021n

    Article  Google Scholar 

  27. Andrieu C, Sykes C, Brochard F (1994) Average spreading parameter on heterogeneous surfaces. Langmuir 10(7):2077–2080. doi:10.1021/la00019a010

    Article  Google Scholar 

  28. Bezerra F, Ribeiro ÉDP, Sousa SB, Lenharo A (2010) In uência da macro-geometria na estabilidade primária dos implantes. Innov Implant J 5:29–34

    Google Scholar 

  29. Barozzi GS, Angeli D (2014) A note on capillary rise in tubes. Energy Proced 45:548–557. doi:10.1016/j.egypro.2014.01.059

    Article  Google Scholar 

  30. Wu W, Nancollas GH (1999) Determination of interfacial tension from crystallization and dissolution data: a comparison with other methods. Adv Colloid Interface Sci 79(2–3):229–279. doi:10.1016/S0001-8686(98)00072-4

    Article  Google Scholar 

  31. Zisman WA (1963) Influence of constitution on adhesion. Ind Eng Chem 55(10):18–38. doi:10.1021/ie50646a003

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to HD Ensinos Odontológicos and SIN for providing the implants and disks and for financial support, and to CNPq and CAPES/Brazil for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarsis Prado Barbosa.

Additional information

Technical Editor: Estevam Las Casas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa, T.P., Naves, M.M., Menezes, H.H.M. et al. Topography and surface energy of dental implants: a methodological approach. J Braz. Soc. Mech. Sci. Eng. 39, 1895–1907 (2017). https://doi.org/10.1007/s40430-016-0700-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-016-0700-x

Keywords

Navigation