Skip to main content
Log in

Abstract

Osteosynthesis plates are used to fix broken bones to help the healing process consolidation. It consists in fixing a plate on a long-bone external surface with screws, sharing forces, and moments between bone and plate. In this paper, a straight osteosynthesis plate is analyzed using an analytical bi-material model, based on mechanics of solids, to estimate the mechanical stress distributions at plate medial cross sections. The analytical model results show good performance in comparison with the commercial finite-element software used as reference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ahmad M, Nanda R, Bajwa AS, Candal-Couto J, Green S, Hui AC (2007) Biomechanical testing of the locking compressing plate: when does the distance between bone and implant significantly reduce construct stability?, Injury. Int J Care Injured 38:358–364

    Article  Google Scholar 

  2. AO Fundation (2013), < https://www2.aofoundation.org/ >

  3. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34:859–871

    Article  Google Scholar 

  4. Bitsakos C, Kerner J, Fisher I, Amis AA (2005) The effect of muscle loading on the simulation of bone remodelling in the proximal femur. J Biomech 38:133–139

    Article  Google Scholar 

  5. Cordey J, Borgeaud M, Perren SM (2000) Force transfer between the plate and the bone: relative importance of the bending stiffness of the screws and the friction between plate and bone. Injury Int J Care Injured 31:21–28

    Article  Google Scholar 

  6. Crandall SH, Dahl NC, Lardner TJ (1978) An Introduction to the Mechanics of Solids. Second Edition with SI units, McGraw Hill International Editions

    Google Scholar 

  7. Cristofolini L, Viceconti M, Toni A, Giunti A (1995) Influence of Thigh Muscles on the Axial Strains in a Proximal Femur during Early Stance in Gait, Technical Note. J Biomech 28(5):617–624

    Article  Google Scholar 

  8. Doblaré M, García JM, Gómez MJ (2004) Modeling bone tissue fracture and healing: a review. Eng Fract Mech 71:1809–1840

    Article  Google Scholar 

  9. Duda GN, Heller M, Albinger J, Schulz O, Schneider E, Claes L (1998) Influence of muscle forces on femoral strain distribution. J Biomech 31(9):841–846

    Article  Google Scholar 

  10. Duda GN, Schneider E, Chao EYS (1997) Internal Forces and Moments in the Femur during Walking. J Biomech 30(9):933–941

    Article  Google Scholar 

  11. Duda GN, Brand D, Freitag S, Lierse W, Schneider E (1996) Variability of femoral muscle attachments. J Biomech 29(9):1185–1190

    Article  Google Scholar 

  12. Ecsedi I (2009) Some analytical solutions for Saint-Venant torsion of non-homogeneous cylindrical bars. Eur J Mech A/Solids 28(5):985–990

    Article  MATH  Google Scholar 

  13. Edwards WB, Gillette JC, Thomas JM, Derrick TR (2008) Internal femoral forces and moments during running: implications for stress fracture development. Clin Biomech 23:1269–1278

    Article  Google Scholar 

  14. Frigg, R. (2001) Locking compression plate (LCP). An ostheosynthesis plate based on the Dynamic Compression Plate and the Point Contact Fixator (PC-Fix). Injury Int J Care Injured 32:63–66

  15. Gdoutos EE, Raftopoulos DD, Baril JD (1982) A Critical Review of the Biomechanical Stress Analysis of the Human Femur. Biomater Rev 3(1):2–8

    Article  Google Scholar 

  16. Goswami T, Patel V, Dalstrom DJ, Prayson MJ (2011) Mechanical evaluation of fourth-generation composite femur hybrid locking plate constructs. J Mater Sci Mater Med 22:2139–2146

    Article  Google Scholar 

  17. Keaveny TM, Morgan EF, Yeh OC (2004) Standard Handbook of Biomedical Engineering and Design—Chapter 8—Bone Mechanics, Mc Graw Hill Publications

  18. Kenedi PP, Riagusoff IIT (2015) Stress development at human femur by muscle forces. J Braz Soc Mech Sci Eng 37(1):31–43

    Article  Google Scholar 

  19. Kenedi PP, Vignoli LL (2014) Ostheosynthesis plate: analytical and finite element approaches, XXIV Brazilian Congress of Biomedical Engineering—CBEB 2014, Uberlandia, Brazil

  20. Keyak JH, Rosi SA (2000) Prediction of femoral fracture load using finite element models: an examination of stress and strain-based failure theories. J Biomech 33:209–214

    Article  Google Scholar 

  21. Kubiak EN, Fulkerson ES, Egol KA (2006) The evolution of locked plates. J Bone Joint Surg Am 88:189–200

    Google Scholar 

  22. Lee, H. H. (2002) Finite element simulations with ANSYS workbench 14, SDC Publications

  23. Raftopoulos DD, Qassem W (1987) Three-Dimensional Curved Beam Stress Analysis of the Human Femur. J Biomed Eng 9:356–366

    Article  Google Scholar 

  24. Ramos A, Simões JA (2006) Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur. Med Eng Phys 28:916–924

    Article  Google Scholar 

  25. Rockwood G (2006) Fractures in Adults, Chapter 47—fractures of the shaft of the femur, Lippincott Williams & Wilkins, 6th Edition

  26. Rudman KE, Aspden RM, Meakin JR (2006) Compression or tension? The stress distribution in the proximal femur, biomedical engineering online 5(12):1–7

    Google Scholar 

  27. Simões JA, Vaz MA, Blatcher S, Taylor M (2000) Influence of head constraint and muscle forces on the strain distribution within the intact femur. Med Eng Phys 22:453–459

    Article  Google Scholar 

  28. Sokolnikoff IS (1956) Mathematical theory of elasticity, Second Edition, McGraw-Hill Book Company

  29. Sommers MB, Fitzpatrick DC, Madey SM, Zanderschulp CV, Bottlang M (2007) A surrogate long-bone model with osteoporotic material properties for biomechanical testing of fracture implants. J Biomech 40:3297–3304

    Article  Google Scholar 

  30. Talbot M, Zdero R, Garneau D, Cole PA, Schemitsch EH (2008) Fixation of long bone segmental defects: a biomechanical study. Injury Int J Care Injured 39(2):181–186

    Article  Google Scholar 

  31. Taylor ME, Tanner KE, Freeman MAR, Yettram AL (1996) Stress and strain distribution within the intact femur: compression or bending? Med Eng Phys 18(2):122–131

    Article  Google Scholar 

  32. Timoshenko S, Goodier JN (1951) Theory of elasticity, Second Edition, McGraw-Hill Book Company

  33. Toridis TG (1969) Stress analysis of the femur. J Biomech 2:163–174

    Article  Google Scholar 

  34. Tung-Wu Lu, Taylor SJG, O’Connor JJ, Walker PS (1997) Influence of muscle activity on the forces in the femur: an In Vivo study. J Biomech 30(11/12):1101–1106

    Google Scholar 

  35. Vignoli LL, Kenedi PP (2015) A finite element study of ostheosynthesis plates, V Encontro Nacional de Engenharia Biomecânica—ENEBI 2015, Uberlândia, Brazil

  36. Young W, Budynas R (2001) Roark’s Formulas for Stress and Strain, Seventh Edition, McGraw-Hill Book Company

  37. Pilkey DP, Pilkey DF (2008) Peterson’s Stress Concentration Factors, Third Edition, John Wiley and Sons, Inc

  38. Glinka G, Newport A (1987) Universal features of elastic notch-tip stress fields. Int J Fatigue (3):143–150

  39. International Standard ISO 5832-1 (2007) Implants for surgery—metallic materials—Part 1: Wrought stainless steel, 4th Edition

  40. Vignoli LL, Kenedi PP (2016) Stress development at human femur by muscle forces. Lat Am J Solids Struct 13(1):51–72

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Pedro Kenedi.

Additional information

Technical Editor: Estevam Las Casas.

Appendix

Appendix

See Tables 7, 8.

Table 7 Cross-sectional geometric variables
Table 8 Aditional expressions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenedi, P.P., Vignoli, L.L. An osteosynthesis plate analytical model. J Braz. Soc. Mech. Sci. Eng. 39, 645–659 (2017). https://doi.org/10.1007/s40430-016-0598-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-016-0598-3

Keywords

Navigation