Skip to main content
Log in

Numerical study of dual-phase-lag heat conduction in a thermal barrier coating with a hybrid method

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this study, the dual-phase-lag (DPL) heat conduction model is applied to study the non-Fourier heat transfer in a thermal barrier coating (TBC) structure subjected to heat flux on the exterior of the coating. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods in conjunction with hyperbolic shape functions is used to solve the hyperbolic heat conduction equations in the linearized form of DPL model. The transformed nodal temperatures are inverted to the physical quantities using numerical inversion of the Laplace transform. Parametric studies of properties of the substrate and the coating on the temperature distributions in the TBC are performed. A comparison between the present study and other work in the literature using the thermal wave model is also made. The results also show that the phase lag of heat flux tends to induce thermal waves with sharp wave fronts separating heated and unheated zones in the structure, while the phase lag of temperature gradient results in non-Fourier diffusion-like conduction and smooths the sharp wave fronts by promoting conduction into the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

c :

Specific heat (J kg−1 K−1)

k :

Thermal conductivity (W m−1 K−1)

\(L_{1}\) :

Domain extent for the substrate (m)

\(L_{2}\) :

Domain extent for the TBC (m)

l :

Dimensionless distance between two neighboring nodes

m :

Node number at the interface

Q :

Dimensionless heat flux defined in Eq. (14)

q :

Heat flux (W m−2)

R :

Ratio of thermophysical properties between the substrate and the TBC

r :

Position vector (m)

s :

Laplace transform parameter

T :

Temperature (K)

\(T_{c}\) :

Isothermal boundary condition at the substrate (K)

\(T_{R}\) :

Reference temperature (K)

\(T_{0}\) :

Initial temperature (K)

t :

Time (s)

u :

Step function

x :

x-Coordinate (m)

\(\alpha\) :

Thermal diffusivity (m2 s−1)

\(\eta\) :

Dimensionless distance defined in Eq. (14)

\(\theta\) :

Dimensionless temperature defined in Eq. (14)

\(\lambda\) :

Parameter defined in Eq. (26)

\(\rho\) :

Density (kg m−3)

\(\xi\) :

Dimensionless time defined in Eq. (14)

\(\xi_{d}\) :

Dimensionless time of exposure of heat flux on TBC

\(\tau_{q}\) :

Phase lag of the heat flux (s)

\(\tau_{T}\) :

Phase lag of the temperature gradient (s)

i :

Node index

j :

Domain index

References

  1. Akwaboa S, Mensah P, Diwan R (2010) Effect of thermal radiation on air plasma spray (APS) coated gas turbine blade. In: Proceedings of ASME turbo expo congress and exposition, Glasgow, UK, 14–18 June 2010

  2. Frankel JI, Vick B, Ozisik MN (1987) General formulation and analysis of hyperbolic heat conduction in composite media. Int J Heat Mass Transf 30:1293–1305

    Article  MATH  Google Scholar 

  3. Cattaneo C (1958) A form of heat conduction which eliminates the paradox of instantaneous propagation. Comp Rend 247:431–433

    MathSciNet  Google Scholar 

  4. Vernotte P (1961) Some possible complications in the phenomena of thermal conduction. Comp Rend 252:2190–2191

    MathSciNet  Google Scholar 

  5. Ozisik MN, Tzou DY (1994) On the wave theory in heat conduction. ASME J Heat Transf 116:526–535

    Article  Google Scholar 

  6. Tzou DY (1997) Macro- to micro-scale heat transfer: the lagging behavior. Taylor and Francis, Washington, DC

    Google Scholar 

  7. Bayazitoglu Y, Peterson GP (1992) Fundamental issues in hyperbolic heat conduction. ASME HTD, p 227

  8. Tzou DY, Ozisik MN, Chiffelle RJ (1994) The lattice temperature in the microscopic two-step model. ASME J Heat Transf 116:1034–1038

    Article  Google Scholar 

  9. Taitel Y (1972) On the parabolic, hyperbolic and discrete formulation of the heat conduction equation. Int J Heat Mass Transf 15:369–371

    Article  Google Scholar 

  10. Koerner C, Bergmann HW (1998) Physical defects of the hyperbolic heat conduction equation. Appl Phys A: Mater Sci Process 67:397–401

    Article  Google Scholar 

  11. Godoy S, García-Colín LS (1997) Nonvalidity of the telegrapher’s diffusion equation in two and three dimensions for crystalline solids. Phys Rev E 55:2127–2131

    Article  Google Scholar 

  12. Tzou DY (1995) A unified field approach for heat conduction from macro- to micro-scales. ASME J Heat Transf 117:8–16

    Article  Google Scholar 

  13. Tzou DY (1995) Experimental support for the lagging response in heat propagation. J Thermophys Heat Transf 9:686–693

    Article  Google Scholar 

  14. Tzou DY, Chiu KS (2001) Temperature-dependent thermal lagging in ultrafast laser heating. Int J Heat Mass Transf 44:1725–1734

    Article  MATH  Google Scholar 

  15. Ramadan K, Al-Nimr MA (2009) Thermal wave reflection and transmission in a multilayer slab with imperfect contact using the dual-phase-lag model. Heat Transf Eng 30:677–687

    Article  Google Scholar 

  16. Ordóñez-Miranda J, Alvarado-Gil JJ (2010) Exact solution of the dual-phase-lag heat conduction model for a one-dimensional system excited with a periodic heat source. Mech Res Commun 37:276–281

    Article  MATH  Google Scholar 

  17. Liu KC, Chen HT (2010) Investigation for the dual phase lag behavior of bio-heat transfer. Int J Therm Sci 49:1138–1146

    Article  Google Scholar 

  18. Lee HL, Chen WL, Chang WJ, Wei EJ, Yang YC (2013) Analysis of dual-phase-lag heat conduction in short-pulse laser heating of metals with a hybrid method. Appl Therm Eng 52:275–283

    Article  Google Scholar 

  19. Akwaboa S, Mensah P, Dag Y (2013) Study of heat transfer in a thermal barrier coatings system using the dual phase lag model based on mean value finite volume method. In: Proceedings of the ASME 2013 international mechanical engineering congress and exposition, IMECE2013-66060

  20. Liu KC, Wang JC (2014) Analysis of thermal damage to laser irradiated tissue based on the dual-phase-lag model. Int J Heat Mass Transf 70:621–628

    Article  Google Scholar 

  21. Akwaboa S, Mensah P, Beyazouglu E, Diwan R (2012) Thermal modeling and analysis of a thermal barrier coating structure using non-fourier heat conduction. ASME J Heat Transf 134:111301-1–111301-12

    Article  Google Scholar 

  22. Akbarzadeh AH, Chen ZT (2014) Dual phase lag heat conduction in functionally graded hollow spheres. Int J Appl Mech 6:1450002-1–1450002-27

    Article  Google Scholar 

  23. Liu KC, Cheng PJ (2006) Numerical analysis for dual-phase-lag heat conduction in layered films. Numer Heat Transf A 49:589–606

    Article  Google Scholar 

  24. Yang YC, Lee HL, Hsu JC, Chu SS (2008) Thermal stresses in multilayer gun barrel with interlayer thermal contact resistance. J Therm Stress 31:624–637

    Article  Google Scholar 

  25. Chen HT, Lin JY (1993) Numerical analysis for hyperbolic heat conduction. Int J Heat Mass Transf 36:2891–2898

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology, Taiwan, Republic of China, under the Grant Number MOST 103-2221-E-168-004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haw-Long Lee.

Additional information

Technical Editor: Francis HR Franca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YC., Chen, WL., Yeh, TS. et al. Numerical study of dual-phase-lag heat conduction in a thermal barrier coating with a hybrid method. J Braz. Soc. Mech. Sci. Eng. 38, 287–296 (2016). https://doi.org/10.1007/s40430-015-0412-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0412-7

Keywords

Navigation