Skip to main content
Log in

Analysis of MHD flow characteristics of an UCM viscoelastic flow in a permeable channel under slip conditions

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In the present study, the problem of two-dimensional magneto-hydrodynamic (MHD) flow of an upper-convected Maxwell (UCM) fluid has been investigated in a permeable channel with slip at the boundaries. Employing the similarity variables, the basic partial differential equations are reduced to ordinary differential equations with Dirichlet and Neumann boundary conditions which are solved analytically and numerically using the Homotopy Analysis Method and fourth-order Runge–Kutta–Fehlberg method, respectively. The influences of the some physical parameters such as Reynolds number, slip condition, Hartman number and Deborah number on non-dimensional velocity profiles are considered. As an important outcome, comparison between HAM and numerical method shows that HAM is an exact and high-efficient method for solving these kinds of problems. Moreover, it can be found that the velocity profiles are a decreasing function of Hartmann number and Deborah number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Rew :

Reynolds number

M :

Hartman number

k :

Slip parameter

De:

Deborah number

HAM :

Homotopy analysis method

NUM :

Numerical method

ħ :

Auxiliary parameter

\(\mathcal{H}\) :

Auxiliary function

\(\mathcal{L}\) :

Linear operator of HAM

\(\mathcal{N}\) :

Non-linear operator

v * :

Velocity component in y-direction

u * :

Velocity component in x-direction

x :

Dimensionless horizontal coordinate

y :

Dimensionless vertical coordinate

x * :

Distance in x-direction parallel to the plates

y * :

Distance in y-direction parallel to the plates

ρ :

Density of the fluid

λ :

Relaxation time

υ :

Kinematic viscosity

β :

Of sliding friction

References

  1. Fetecau C, Fetecau C (2003) A new exact solution for the flow of a Maxwell fluid past an infinite plate. Int J Non-Lin Mech 38:423–427

    Article  MathSciNet  MATH  Google Scholar 

  2. Sadeghy K, Sharifi M (2004) Local similarity solution for the flow of a “second-grade” viscoelastic fluid above a moving plate. Int J Non-Lin Mech 39:1265–1273

    Article  MATH  Google Scholar 

  3. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. vols I and II. Wiley, New York

  4. Choi JJ, Rusak Z, Tichy JA (1999) Maxwell fluid suction flow in a channel. J Non-Newton Fluid Mech 85:165–187

    Article  MATH  Google Scholar 

  5. Sadeghy K, Najafi AH, Saffaripour M (2005) Sakiadis flow of an upper-convected Maxwell fluid. Int J Non-Lin Mech 40:1220–1228

    Article  MATH  Google Scholar 

  6. Hunt JCR (1965) Magnetohydrodynamic flow in rectangular ducts. J Fluid Mech 21:577–590

    Article  MathSciNet  MATH  Google Scholar 

  7. Ziabakhsh Z, Domairry G (2008) Solution of laminar viscous flow in semi porous channel in the presence of a uniform magnetic field by using homotopy analysis method, accepted in communications in nonlinear science and numerical simulation

  8. Ganji DD, Hashemi Kachapi Seyed H (2011) Analytical and numerical method in engineering and applied science. Progress Nonlinear Sci 3:1–579

    Google Scholar 

  9. Sheikholeslami M, Hatami M, Ganji DD (2014) Nano fluid flow and heat transfer in a rotating system in the presence of a magnetic field. J Mol Liq 190:112–120

    Article  Google Scholar 

  10. Sheikholeslami M, Hatami M, Ganji DD (2013) Analytical investigation of MHD nanofluid flow in a semi-porous channel. Powder Technol 246:327–336

    Article  Google Scholar 

  11. Sheikholeslami M, Ganji DD (2015) Entropy generation of nanofluid in presence of magnetic field using lattice boltzmann method. Physica A 417:273–286

    Article  Google Scholar 

  12. Sheikholeslami M, Gorji-Bandpy M, Ganji DD (2014) Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid. Powder Technol 254:82–93

    Article  Google Scholar 

  13. Sheikholeslami M, Gorji-Bandpy M, Ganji DD (2013) Numerical investigation of MHD effects on Al2O3–water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM. Energy 60:501–510

    Article  Google Scholar 

  14. Adomian G (1992) A review of the decomposition method and some recent results for nonlinear equation. Math Comput Model 13(7):17

    Article  MathSciNet  Google Scholar 

  15. Nayfeh AH (2000) Perturbation methods. Wiley, New York

    Book  MATH  Google Scholar 

  16. Liao SJ (1992) The proposed homotopy analysis technique for the solution of nonlinear problems. Ph.D. thesis, Shanghai Jiao Tong University

  17. Liao SJ (1995) An approximate solution technique not depending on small parameters: a special example. Int J Non-Linear Mech 303:371–380

    Article  Google Scholar 

  18. Rashidi MM, Parsa AB, B´eg OA, Shamekhi L, Sadri SM, B´eg TA (2014) Parametric analysis of entropy generation in magneto-hemodynamic flow in a semi-porous channel with OHAM and DTM. Appl Bion Biomech 11:47–60

    Article  Google Scholar 

  19. Liao SJ (2003) Beyond perturbation: introduction to the homotopy analysis method. Chapman & Hall, CRC Press, Boca Raton

    Book  Google Scholar 

  20. Liao SJ, Cheung KF (2003) Homotopy analysis of nonlinear progressive waves in deep water. J Eng Math 45(2):103–116

    Article  MathSciNet  Google Scholar 

  21. Liao SJ (2004) On the homotopy analysis method for nonlinear problems. Appl Math Comput 47(2):499–513

    Article  Google Scholar 

  22. Rashidi MM, Domairry G, Dinarvand S (2009) Approximate solutions for the Burger and regularized long wave equations by means of the homotopy analysis method. Commun Nonlinear Sci Numer Simulat 14(3):708–717

    Article  Google Scholar 

  23. Domairry G, Fazeli M (2009) Homotopy Analysis method to determine the fin efficiency of convective straight fins with temperature dependent thermal conductivity. Commun Nonlinear Sci Numer Simulat 14(2):489–499

    Article  Google Scholar 

  24. Ganji DD, Kachapi SH (2011) Analysis of nonlinear equations in fluids. Prog Nonlinear Sci 3:1–294

    Google Scholar 

  25. Xu H, Liao SJ (2008) Dual solutions of boundary layer flow over an upstream moving plate. Commun Nonlinear Sci Numer Simulat 13(2):350–358

    Article  MathSciNet  MATH  Google Scholar 

  26. Domairry G, Nadim N (2008) Assessment of homotopy analysis method and homotopy perturbation method in non-linear heat transfer equation. Int Commun Heat Mass Transf 35(1):93

    Article  Google Scholar 

  27. Raftari B, Yildirim A (2010) The application of homotopy perturbation method for MHD flows of UCM fluids above porous stretching sheets. Comp Math Appl 59:3328–3337

    Article  MathSciNet  MATH  Google Scholar 

  28. Sajid M, Iqbal Z, Hayat T, Obaidat S (2011) series solution for rotating flow of an upper convected maxwell fluid over a stretching sheet. Commun Theor Phys 56:740–744

    Article  MATH  Google Scholar 

  29. Hayat T, Abbas Z (2007) Channel flow of a Maxwell fluid with chemical reaction. Z Angew Math Phys (ZAMP) 59(1):124–144

    Article  MathSciNet  Google Scholar 

  30. Raftari B, Vajravelu K (2012) Homotopy analysis method for MHD viscoelastic fluid flow and heat transfer in a channel with a stretching wall. Commun Nonlinear Sci Numer Simul 17(11):4149–4162

    Article  MathSciNet  MATH  Google Scholar 

  31. Bég OA, Makinde OD (2011) Viscoelastic flow and species transfer in a Darcian high-permeability channel. J Petrol Sci Eng 76:93–99

    Article  Google Scholar 

  32. Malvandi A, Hedayati F, Ganji DD (2014) Slip effects on unsteady stagnation pointflow of a nanofluid over a stretching sheet. Powder Technol 253:377–384

    Article  Google Scholar 

  33. Vajravelu K, Prasad KV, Sujatha A (2012) MHD flow and mass transfer of chemically reactive upper convected Maxwell fluid past porous surface. Appl Math Mech 33(7):899–910 (English Edition)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hatami M, Nouri R, Ganji DD (2013) Forced convection analysis for MHD Al2O3–water nanofluid flow over a horizontal plate. J Mol Liq 187:294–301

    Article  Google Scholar 

  35. Aziz A (2006) Heat conduction with maple. In: Edwards RT (ed) Philadelphia (PA)

  36. Aziz A (2009) A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Commun Nonlinear Sci Numer Simul 14:1064–1068

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Ganji.

Additional information

Technical Editor: Monica Feijo Naccache.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, M., Khaki, M., Rahbari, A. et al. Analysis of MHD flow characteristics of an UCM viscoelastic flow in a permeable channel under slip conditions. J Braz. Soc. Mech. Sci. Eng. 38, 977–988 (2016). https://doi.org/10.1007/s40430-015-0325-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0325-5

Keywords

Navigation