Skip to main content
Log in

Magnetohydrodynamics (MHD) stagnation point flow past a shrinking/stretching surface with double stratification effect in a porous medium

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present work emphasizes the MHD mixed convective stagnation point flow over a shrinking/stretching surface saturated in a porous medium. The double stratification with heat source effects are also considered while the magnetic field is imposed normal to the sheet. The governing model (partial differential equations) is converted into a system of ordinary (similarity) differential equations using similarity transformations. The boundary value problem solver (bvp4c) in the MATLAB software is utilized for the numerical computations. Numerical results are graphically illustrated in the form of velocity, temperature and concentration profiles for several values of buoyancy, magnetic, thermal and solutal stratification parameters. The graphs of skin friction coefficient, local Nusselt and Sherwood numbers portray that the dual solutions are achievable within a certain range of the buoyancy and velocity ratio parameters. Both assisting and opposing flow cases can generate two solutions, whereas the forced convective flow only produces a unique solution. The execution of stability analysis affirms the reliability of the first solution. Both heat and mass transfer rates intensify with the increment of the velocity ratio parameter for all type of convective flows. The fluid temperature and concentration decrease with the increment of the thermal and solutal stratification parameters, respectively, whereas the magnetic and buoyancy parameters reduce both temperature and concentration profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hiemenz K. Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytech J. 1911;326:321–4.

    Google Scholar 

  2. Homann F. Der Einfluss grosser Zhigkeit bei der Strmung um den Zylinder und um die Kugel. ZAMMJ Appl Math Mech/Zeitschrift fr Angewandte Mathematik und Mechanik. 1936;16:153–64.

    Google Scholar 

  3. Karwe MV, Jaluria Y. Fluid flow and mixed convection transport from a moving plate in rolling and extrusion processes. J Heat Transf. 1988;110:655–61. https://doi.org/10.1115/1.3250542.

    Article  CAS  Google Scholar 

  4. Michaeli W. Extrusion dies for plastics and rubber 3E: design and engineering computations. Munich: Hanser; 2003.

    Book  Google Scholar 

  5. Misra JC, Sinha A, Mallick B. Stagnation point flow and heat transfer on a thin porous sheet: applications to flow dynamics of the circulatory system. Phys A Stat Mech Appl. 2017;470:330–44. https://doi.org/10.1016/j.physa.2016.10.051.

    Article  Google Scholar 

  6. Tadmor Z, Gogos CG. Principles of polymer processing. Hoboken: Wiley; 2013.

    Google Scholar 

  7. Chiam TC. Stagnation-point flow towards a stretching plate. J Phys Soc Jpn. 1994;63:24432444. https://doi.org/10.1143/jpsj.63.2443.

    Article  Google Scholar 

  8. Mahapatra TR, Gupta AS. Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass Transf. 2002;38:517–21. https://doi.org/10.1007/s002310100215.

    Article  Google Scholar 

  9. Mahapatra TR, Gupta AS. Magnetohydrodynamic stagnation-point flow towards a stretching sheet. Acta Mech. 2001;152:191–6. https://doi.org/10.1007/BF01176953.

    Article  Google Scholar 

  10. Wang CY. Stagnation flow towards a shrinking sheet. Int J Non Linear Mech. 2008;43:377–82. https://doi.org/10.1016/j.ijnonlinmec.2007.12.021.

    Article  Google Scholar 

  11. Bhattacharyya K, Mukhopadhyay S, Layek GC. Slip effects on boundary layer stagnation-point flow and heat transfer towards a shrinking sheet. Int J Heat Mass Transf. 2011;54(1–3):308–13. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.041.

    Article  Google Scholar 

  12. Ishak A, Jafar K, Nazar R, Pop I. MHD stagnation point flow towards a stretching sheet. Phys A Stat Mech Appl. 2009;388:3377–83. https://doi.org/10.1016/j.physa.2009.05.026.

    Article  CAS  Google Scholar 

  13. Mahapatra TR, Nandy SK, Gupta AS. Momentum and heat transfer in MHD stagnation-point flow over a shrinking sheet. J Appl Mech. 2011;78:021015. https://doi.org/10.1115/1.4002577.

    Article  Google Scholar 

  14. Lok YY, Ishak A, Pop I. MHD stagnation-point flow towards a shrinking sheet. Int J Numer Method Heat Fluid Flow. 2011;21:61–72. https://doi.org/10.1108/09615531111095076.

    Article  Google Scholar 

  15. Shen M, Wang F, Chen H. MHD mixed convection slip flow near a stagnation-point on a nonlinearly vertical stretching sheet. Bound Value Probl. 2015;1:78. https://doi.org/10.1186/s13661-015-0340-6.

    Article  Google Scholar 

  16. Mabood F, Khan WA, Ismail AM. MHD stagnation point flow and heat transfer impinging on stretching sheet with chemical reaction and transpiration. Chem Eng J. 2015;273:430–7. https://doi.org/10.1016/j.cej.2015.03.037.

    Article  CAS  Google Scholar 

  17. Dash GC, Tripathy RS, Rashidi MM, Mishra SR. Numerical approach to boundary layer stagnation-point flow past a stretching/shrinking sheet. J Mol Liq. 2016;221:860–6. https://doi.org/10.1016/j.molliq.2016.06.072.

    Article  CAS  Google Scholar 

  18. Bhatti MM, Abbas MA, Rashidi MM. A robust numerical method for solving stagnation point flow over a permeable shrinking sheet under the influence of MHD. Appl Math Comput. 2018;316:381–9. https://doi.org/10.1016/j.amc.2017.08.032.

    Article  Google Scholar 

  19. Sharma PR, Sinha S, Yadav RS, Filippov AN. MHD mixed convective stagnation point flow along a vertical stretching sheet with heat source/sink. Int J Heat Mass Transf. 2018;117:780–6. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.026.

    Article  Google Scholar 

  20. Bhatti MM, Rashidi MM. Numerical simulation of entropy generation on MHD nanofluid towards a stagnation point flow over a stretching surface. Int J Appl Comput Math. 2017;3:2275–89. https://doi.org/10.1007/s40819-016-0193-4.

    Article  Google Scholar 

  21. Dogonchi AS, Sheremet MA, Ganji DD, Pop I. Free convection of copper–water nanofluid in a porous gap between hot rectangular cylinder and cold circular cylinder under the effect of inclined magnetic field. J Therm Anal Calorim. 2019;135(2):1171–84. https://doi.org/10.1007/s10973-018-7396-3.

    Article  CAS  Google Scholar 

  22. Abro KA, Chandio AD, Abro IA, Khan I. Dual thermal analysis of magnetohydrodynamic flow of nanofluids via modern approaches of Caputo–Fabrizio and Atangana–Baleanu fractional derivatives embedded in porous medium. J Therm Anal Calorim. 2019;135(4):2197–207. https://doi.org/10.1007/s10973-018-7302-z.

    Article  CAS  Google Scholar 

  23. Ma Y, Mohebbi R, Rashidi MM, Manca O, Yang Z. Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method. J Therm Anal Calorim. 2019;135(6):3197–213. https://doi.org/10.1007/s10973-018-7518-y.

    Article  CAS  Google Scholar 

  24. Ma Y, Mohebbi R, Rashidi MM, Yang Z. MHD forced convection of MWCNTFe3O4/water hybrid nanofluid in a partially heated-shaped channel using LBM. J Therm Anal Calorim. 2019;136(4):1723–35. https://doi.org/10.1007/s10973-018-7788-4.

    Article  CAS  Google Scholar 

  25. Sheikholeslami M, Sheremet MA, Shafee A, Li Z. CVFEM approach for EHD flow of nanofluid through porous medium within a wavy chamber under the impacts of radiation and moving walls. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08235-3.

    Article  Google Scholar 

  26. Baag S, Mishra SR, Hoque MM, Anika NN. Magnetohydrodynamic boundary layer flow over an exponentially stretching sheet past a porous medium with uniform heat source. J Nanofluids. 2018;7(3):570–6. https://doi.org/10.1166/jon.2018.1478.

    Article  Google Scholar 

  27. Noor NF, Hashim I. MHD flow and heat transfer adjacent to a permeable shrinking sheet embedded in a porous medium. Sains Malays. 2009;38:559–65.

    Google Scholar 

  28. Rosali H, Ishak A, Pop I. Stagnation point flow and heat transfer over a stretching/shrinking sheet in a porous medium. Int Commun Heat Mass Transf. 2011;38:1029–32. https://doi.org/10.1016/j.icheatmasstransfer.2011.04.031.

    Article  Google Scholar 

  29. Rashidi MM, Erfani E. A new analytical study of MHD stagnation-point flow in porous media with heat transfer. Comput Fluids. 2011;40:172–8. https://doi.org/10.1016/j.compfluid.2010.08.021.

    Article  Google Scholar 

  30. Bhukta D, Dash GC, Mishra SR, Baag S. Dissipation effect on MHD mixed convection flow over a stretching sheet through porous medium with non-uniform heat source/sink. Ain Shams Eng J. 2015;8(3):353–61. https://doi.org/10.1016/j.asej.2015.08.017.

    Article  Google Scholar 

  31. Bhatti MM, Rashidi MM. Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet. J Mol Liq. 2016;221:567–73. https://doi.org/10.1016/j.molliq.2016.05.049.

    Article  CAS  Google Scholar 

  32. Seth GS, Singhaa AK, Mandal b MS, Banerjeec A, Bhattacharya K. MHD stagnation-point flow and heat transfer past a non-isothermal shrinking/stretching sheet in porous medium with heat sink or source effect. Int J Mech Sci. 2017;134:98–111. https://doi.org/10.1016/j.ijmecsci.2017.09.049.

    Article  Google Scholar 

  33. Bouhal T, Fertahi S, Agrouaz Y, El Rhafiki T, Kousksou T, Jamil A. Numerical modeling and optimization of thermal stratification in solar hot water storage tanks for domestic applications: CFD study. Solar Energy. 2017;157:441–55. https://doi.org/10.1016/j.solener.2017.08.061.

    Article  Google Scholar 

  34. Chang CL, Lee ZY. Free convection on a vertical plate with uniform and constant heat flux in a thermally stratified micropolar fluid. Mech Res Commun. 2008;35:421–7. https://doi.org/10.1016/j.mechrescom.2008.03.007.

    Article  Google Scholar 

  35. Srinivasacharya D, Upendar M. Effect of double stratification on MHD free convection in a micropolar fluid. J Egypt Math Soc. 2013;21:370–8. https://doi.org/10.1016/j.joems.2013.02.006.

    Article  Google Scholar 

  36. Mishra SR, Pattnaik PK, Dash GC. Effect of heat source and double stratification on MHD free convection in a micropolar fluid. Alex Eng J. 2015;54:681–9. https://doi.org/10.1016/j.aej.2015.04.010.

    Article  Google Scholar 

  37. Rashad AM, Abbasbandy S, Chamkha AJ. Mixed convection flow of a micropolar fluid over a continuously moving vertical surface immersed in a thermally and solutally stratified medium with chemical reaction. J Taiwan Inst Chem Eng. 2014;45:2163–9. https://doi.org/10.1016/j.jtice.2014.07.002.

    Article  CAS  Google Scholar 

  38. Hayat T, Hussain T, Shehzad SA, Alsaedi A. Thermal and concentration stratifications effects in radiative flow of Jeffrey fluid over a stretching sheet. PLoS ONE. 2014;9:e107858. https://doi.org/10.1371/journal.pone.0107858.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hayat T, Qayyum S, Farooq M, Alsaedi A, Ayub M. Mixed convection flow of Jeffrey fluid along an inclined stretching cylinder with double stratification effect. Therm Sci. 2017;21(2):849–62. https://doi.org/10.2298/TSCI141106052H.

    Article  Google Scholar 

  40. Ibrahim W, Makinde OD. The effect of double stratification on boundary-layer flow and heat transfer of nanofluid over a vertical plate. Comput Fluids. 2013;86:433–41. https://doi.org/10.1016/j.compfluid.2013.07.029.

    Article  Google Scholar 

  41. Kandasamy R, Dharmalingam R, Prabhu KS. Thermal and solutal stratification on MHD nanofluid flow over a porous vertical plate. Alex Eng J. 2018;57(1):121–30. https://doi.org/10.1016/j.aej.2016.02.029.

    Article  Google Scholar 

  42. Khashi’ie NS, Arifin NM, Hafidzuddin EH, Wahi N. Dual stratified nanofluid flow past a permeable shrinking/stretching sheet using a non-Fourier energy model. Appl Sci. 2019;9(10):2124. https://doi.org/10.3390/app9102124.

    Article  CAS  Google Scholar 

  43. Khashiie NS, Md Arifin N, Nazar R, Hafidzuddin EH, Wahi N, Pop I. A stability analysis for magnetohydrodynamics stagnation point flow with zero nanoparticles flux condition and anisotropic slip. Energies. 2019;12(7):1268. https://doi.org/10.3390/en12071268.

    Article  CAS  Google Scholar 

  44. Ismail NS, Arifin NM, Nazar R, Bachok N. Stability analysis of unsteady MHD stagnation point flow and heat transfer over a shrinking sheet in the presence of viscous dissipation. Chin J Phys. 2019;57:116–26. https://doi.org/10.1016/j.cjph.2018.12.005.

    Article  CAS  Google Scholar 

  45. Jamaludin A, Nazar R, Pop I. Three-dimensional mixed convection stagnation-point flow over a permeable vertical stretching/shrinking surface with a velocity slip. Chin J Phys. 2017;55:1865–82. https://doi.org/10.1016/j.cjph.2017.08.006.

    Article  CAS  Google Scholar 

  46. Jamaludin A, Nazar R, Pop I. Mixed convection stagnation-point flow of a nanofluid past a permeable stretching/shrinking sheet in the presence of thermal radiation and heat source/sink. Energies. 2019;12(5):788. https://doi.org/10.3390/en12050788.

    Article  CAS  Google Scholar 

  47. Hafidzuddin EH, Nazar R, Arifin NM, Pop I. Effects of anisotropic slip on three-dimensional stagnation-point flow past a permeable moving surface. Eur J Mech B Fluids. 2017;65:515–21. https://doi.org/10.1016/j.euromechflu.2017.05.011.

    Article  Google Scholar 

  48. Hafidzuddin EH, Nazar RM, Arifin NM. Dual solutions and stability analysis of unsteady stagnation-point flow and heat transfer over a shrinking surface with radiation effect. JP J Heat Mass Transf. 2017;14(1):29–45. https://doi.org/10.17654/HM014010029.

    Article  CAS  Google Scholar 

  49. Merkin JH. On dual solutions occurring in mixed convection in a porous medium. J Eng Math. 1986;20:171–9. https://doi.org/10.1007/BF00042775.

    Article  Google Scholar 

  50. Weidman PD, Kubitschek DG, Davis AM. The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int J Eng Sci. 2006;44:730–7. https://doi.org/10.1016/j.ijengsci.2006.04.005.

    Article  CAS  Google Scholar 

  51. Roşca AV, Pop I. Flow and heat transfer over a vertical permeable stretching/shrinking sheet with a second order slip. Int J Heat Mass Transf. 2013;60:355–64. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.028.

    Article  Google Scholar 

  52. Harris SD, Ingham DB, Pop I. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transp Porous Med. 2009;77:267–85. https://doi.org/10.1007/s11242-008-9309-6.

    Article  Google Scholar 

  53. Rahman MM. Effects of second-order slip and magnetic field on mixed convection stagnation-point flow of a Maxwellian fluid: multiple solutions. J Heat Transf. 2016;138:122503. https://doi.org/10.1115/1.4034161.

    Article  CAS  Google Scholar 

  54. Borrelli A, Giantesio G, Patria MC, Roşca NC, Roşca AV, Pop I. Buoyancy effects on the 3D MHD stagnation-point flow of a Newtonian fluid. Commun Nonlinear Sci Numer Simul. 2017;43:1–3. https://doi.org/10.1016/j.cnsns.2016.06.022.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to give a great appreciation to the Universiti Putra Malaysia through the Putra Grant 9570600. The main author also would like to acknowledge Ministry of Education (Malaysia) and Universiti Teknikal Malaysia Melaka through UTEM-SLAB scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihan Md Arifin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Momentum equation

Using the similarity transformation,

$$\begin{aligned}&u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}=U_{\mathrm{e}}\frac{{\hbox {d}}U_{\mathrm{e}}}{{\hbox {d}}x}+\nu \frac{\partial ^{2}u}{\partial y^2}\\&\quad -\,\frac{\sigma B_{0}^{2}}{\rho }(u-U_{\mathrm{e}})-\frac{\nu }{k_1}(u-U_{\mathrm{e}})+ g\left[ \beta _{\mathrm{T}}(T-T_{\infty })\right. \\&\quad \left. +\,\beta _\mathrm{c}(C-C_{\infty })\right] \\&\left( bxf'\right) \left( bf'\right) +\left( -\sqrt{b\nu }f\right) \left( bx\sqrt{\frac{b}{\nu }}f''\right) \\&\quad =(bx)(b)+\nu \left( \frac{b^2x}{\nu }f''' \right) -\frac{\sigma B_{0}^{2}}{\rho }(bxf'-bx)\\&\qquad -\,\frac{\nu }{k_1}(bxf'-bx)\\&\qquad +\,g\beta _{\mathrm{T}}\theta (\eta )\bigtriangleup T+g\beta _{\rm C}\phi (\eta )\bigtriangleup C\\&b^2x\left( f'\right) ^2-b^2xff''=b^2x+b^2xf'''\\&\quad -\,bx\frac{\sigma B_{0}^{2}}{\rho }(f'-1)-\frac{\nu }{k_1}bx(f'-1)\\&\quad +\,g\beta _{\mathrm{T}}\theta (\eta )\bigtriangleup T+g\beta _{\rm C}\phi (\eta )\bigtriangleup C \end{aligned}$$

Divide both sides with \(b^2x\)

$$\begin{aligned} \left( f'\right) ^2-ff''&=1+f'''+\frac{\sigma B_{0}^{2}}{\rho b}(1-f')\\&\quad +\,\frac{\nu }{k_1 b}(1-f')+\frac{g}{b^2x}\beta _{\mathrm{T}}\bigtriangleup T \theta (\eta )\\&\quad +\,\frac{g}{b^2x}\beta _{\rm C}\bigtriangleup C\phi (\eta )\\ \left( f'\right) ^2-ff''&=1+f'''+(M+K)(1-f')+\lambda \theta +N\phi \end{aligned}$$

Rearrange the equation,

$$\begin{aligned}&f'''+ff''-\left( f'\right) ^2+1+(M+K)(1-f')\\&\quad +\lambda \theta +N\phi =0 \end{aligned}$$

Temperature

$$\begin{aligned} \theta (\eta )= & {} \frac{T-T_{\infty }(x)}{T_{\mathrm{w}}(x)-T_{\infty ,0}}, \quad \bigtriangleup T=T_{\mathrm{w}}(x)-T_{\infty ,0}=Ax, \quad T_\infty (x)=T_{\infty ,0}+Bx\\ T= & {} \bigtriangleup T \theta (\eta )+T_\infty (x)=Ax\theta +T_{\infty ,0}+Bx\\ \frac{\partial T}{\partial x}= & {} A\theta +B, \quad \frac{\partial T}{\partial y}=Ax\theta ' \sqrt{\frac{b}{\nu }} \\&{\text {and}} \quad \frac{\partial ^2 T}{\partial y^2}=Ax\theta '' \frac{b}{\nu } \end{aligned}$$

Substitute into

$$\begin{aligned} u\frac{\partial T}{\partial x}+v\frac{\partial T}{\partial y}=\alpha \frac{\partial ^{2}T}{\partial y^2}+\frac{Q}{\rho C_{\mathrm{p}}}\left( T-T_\infty \right) \end{aligned}$$

the equation will become

$$\begin{aligned}&\left( bxf'\right) \left( A\theta +B\right) +\left( -\sqrt{b\nu }f\right) \left( Ax\theta ' \sqrt{\frac{b}{\nu }}\right) \\&\quad =\alpha \left( Ax\theta '' \frac{b}{\nu }\right) +\frac{Q}{\rho C_{\mathrm{p}}}\left( \bigtriangleup T \theta \right) \\&Abx f'\theta +Bbxf'-Abxf\theta '=Abx\frac{\alpha }{\nu }\theta ''+\frac{Q}{\rho C_{\mathrm{p}}}\left( Ax \theta \right) \end{aligned}$$

Divide with Abx

$$\begin{aligned} f'\theta +\frac{B}{A}f'-f\theta '=\frac{\alpha }{\nu }\theta ''+\frac{Q}{\rho bC_{\mathrm{p}}}\theta \end{aligned}$$

Rearrange the equations

$$\begin{aligned} \frac{1}{Pr}\theta ''+f\theta '-f'\theta -\delta _1 f'+S\theta =0 \end{aligned}$$

or

$$\begin{aligned} \theta ''+Pr[f\theta '-f'\theta -\delta _1 f'+S\theta ]=0 \end{aligned}$$

Concentration

$$\begin{aligned} \phi (\eta )= & {} \frac{C-C_{\infty }(x)}{C_{\mathrm{w}}(x)-C_{\infty ,0}}, \quad \bigtriangleup C=C_{\mathrm{w}}(x)-C_{\infty ,0}=Ex, \\ C_\infty (x)= & {} C_{\infty ,0}+Fx\\ C= & {} \bigtriangleup C \phi (\eta )+C_\infty (x)=Ex\phi +C_{\infty ,0}+Fx\\ \frac{\partial C}{\partial x}= & {} E\phi +F, \quad \frac{\partial C}{\partial y}=Ex\phi ' \sqrt{\frac{b}{\nu }} \\&{\text {and}} \quad \frac{\partial ^2 C}{\partial y^2}=Ex\phi '' \frac{b}{\nu } \end{aligned}$$

Substitute into

$$\begin{aligned} u\frac{\partial C}{\partial x}+v\frac{\partial C}{\partial y}=D \frac{\partial ^{2}C}{\partial y^2} \end{aligned}$$

the equation will become

$$\begin{aligned}&\left( bxf'\right) \left( E\phi +F\right) +\left( -\sqrt{b\nu }f\right) \left( Ex\phi ' \sqrt{\frac{b}{\nu }}\right) =D\left( Ex\phi '' \frac{b}{\nu }\right) \\&\quad Ebx f'\phi +Fbxf'-Ebxf\phi '=\frac{D}{\nu }Ebx\phi '' \end{aligned}$$

Divide with Ebx

$$\begin{aligned} f'\phi +\frac{F}{E}f'-f\phi '=\frac{D}{\nu }\phi '' \end{aligned}$$

Rearrange the equations

$$\begin{aligned} \frac{1}{Sc}\phi ''+f\phi '-f'\phi -\delta _2 f'=0 \end{aligned}$$

or

$$\begin{aligned} \phi ''+Sc[f\phi '-f'\phi -\delta _2 f']=0 \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khashi’ie, N.S., Arifin, N.M., Rashidi, M.M. et al. Magnetohydrodynamics (MHD) stagnation point flow past a shrinking/stretching surface with double stratification effect in a porous medium. J Therm Anal Calorim 139, 3635–3648 (2020). https://doi.org/10.1007/s10973-019-08713-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08713-8

Keywords

Navigation