Skip to main content
Log in

Elastic/plastic buckling analysis of skew plates under in-plane shear loading with incremental and deformation theories of plasticity by GDQ method

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The present study is concerned with the elastic/plastic buckling analysis of a skew plate under in-plane shear loading. The governing equations for moderately thick skew plates are analytically derived based on first-order shear deformation theory, whereas the incremental and deformation theories of plasticity are employed. Two types of shear loads, i.e. rectangular shear (R-shear) and skew shear (S-shear) have been investigated. The buckling coefficient values are significantly affected by the direction of stresses. Since the problem is geometrically and physically nonlinear, the generalized differential quadrature method as an accurate, simple and computationally efficient numerical tool is adopted to discretize the governing equations and the related boundary conditions. Then, a direct iterative method is employed to obtain the buckling coefficients of skew plates. To demonstrate the accuracy of the present analytical solution, a comparison is made with the published experimental and numerical results in literature. The influences of the aspect and thickness ratios, skew angle, incremental and deformation theories and various boundary conditions are examined for R-shear and S-shear buckling coefficients. Finally, some mode shapes of the skew thick plates are illustrated. The present results may serve as benchmark solutions for such plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(a\) :

Length of plate

\(A_{ij}^{\xi } ,A_{ij}^{\eta }\) :

Weighting coefficients of the first-order derivative in \(\xi\)- and \(\eta\)-directions, respectively

\(b\) :

Oblique width of plate

\(B_{ij}^{\xi } ,B_{ij}^{\eta }\) :

Weighting coefficients of the second-order derivative in \(\xi\)- and \(\eta\)-directions, respectively

\(c,k\) :

Ramberg–Osgood parameters

\(D\) :

Flexural rigidity of plate

\(E\) :

Young’s modulus of elasticity

\(G\) :

Effective shear modulus

\(h\) :

Thickness of plate

\(h/b\) :

Thickness ratio

\(N_{\xi } ,N_{\eta }\) :

Number of grid points in \(\xi\)- and \(\eta\)-directions, respectively

\(S_{ij}\) :

Stress deviator tensor

\(S(E_{s} )\) :

Secant modulus

\(T(E_{t} )\) :

Tangent modulus

\(U\) :

Strain energy

\(V\) :

Potential energy

\(W_{ij}\) :

Deflection at grid point ij

\(X_{i}\) :

Grid spacing

\(x,y,z\) :

The Cartesian coordinate variables

\(\alpha ,\beta ,\gamma ,\chi ,\mu ,\delta\) :

Parameters used in stress–strain relations

\(\varepsilon_{e}\) :

Total effective strain

\(\varepsilon\) :

Total plastic strain

\(\varepsilon_{x} ,\varepsilon_{y} ,\varepsilon_{xy}\) :

Normal strain

\(\varphi_{x} ,\varphi_{y} ,\varphi_{\xi } ,\varphi_{\eta }\) :

Rotations about x-, y, \(\xi\) and \(\eta\)

\(\kappa^{2}\) :

Shear correction factor

\(\lambda_{xy}\) :

Elastic/plastic shear buckling coefficient

\(\lambda_{R}\) :

Elastic/plastic buckling coefficient for R-shear loading

\(\lambda_{S}\) :

Elastic/plastic buckling coefficient for S-shear loading

\(\upsilon\) :

Poisson’s ratio

\(\theta\) :

Skew angle

\(\sigma_{e}\) :

Effective stress

\(\sigma_{x} ,\sigma_{y} ,\sigma_{xy}\) :

Normal stress

\(\xi ,\eta\) :

Oblique coordinate variables

References

  1. Mizusawa T, Kajita T, Naruoka M (1980) Buckling of skew plate structures using B–spline functions. Int J Numer Methods Eng 15:87–96

    Article  MATH  MathSciNet  Google Scholar 

  2. Kitipomchai S, Xiang L, Wang CM, Liew KM (1993) Buckling of thick skew plates. Int J Numer Methods Eng 36(8):1299–1310

    Article  Google Scholar 

  3. Wu WX, Shu C, Wang CM, Xiang Y (2010) Free vibration and buckling analysis of highly skewed plates least squares-based finite difference method. Int J Struct Stab Dyn 10:225–252

    Article  MATH  MathSciNet  Google Scholar 

  4. Zhang W, Wang X (2011) Elastoplastic buckling analysis of thick rectangular plates by using the differential quadrature method. Comput Math Appl 61:44–61

    Article  MATH  MathSciNet  Google Scholar 

  5. Xia P, Long SY, Wei KX (2011) An analysis for the elasto-plastic problem of the moderately thick plate using the meshless local Petrov-Galerkin method. Eng Anal Bound Elem 35:908–914

    Article  MATH  MathSciNet  Google Scholar 

  6. Fallah N, Parayandeh-Shahrestany A (2014) A novel finite volume based formulation for the elasto-plastic analysis of plates. Thin-Walled Struct 77:153–164

    Article  Google Scholar 

  7. Belinha J, Dinis LMJS (2006) Elasto-plastic analysis of plates by the element free Galerkin method. Eng Comput 23:525–551

    Article  MATH  Google Scholar 

  8. Belinha J, Dinis LMJS (2007) Nonlinear analysis of plates and laminates using the element free Galerkin method. Compos Struct 78:337–350

    Article  Google Scholar 

  9. Kadkhodayan M, Maarefdoust M (2014) Elastic/plastic buckling of isotropic thin plates subjected to uniform and linearly varying in-plane loading using incremental and deformation theories. Aerosp Sci Technol 32:66–83

    Article  Google Scholar 

  10. Morley LSD (1963) Skew plates and structures. Pergamon, Oxford

    MATH  Google Scholar 

  11. Wittrick WH (1954) Buckling of oblique plates with clamped edges under uniform shear. Aeronaut Q 5:39–51

    MathSciNet  Google Scholar 

  12. Argyris JH (1965) Continua and discontinua. In: Proceedings of the conference on matrix methods in structural mechanics, Air Force Flight Dynamics Lab., AFFDL-TR, pp. 66–80

  13. Ashton J (1969) Stability of clamped skew plates under combined loads. J Appl Mech 36:139–140

    Article  Google Scholar 

  14. Durvasula S (1970) Buckling of clamped skew plates. AIAA J 8:178–181

    Article  Google Scholar 

  15. Durvasula S (1971) Buckling of simply supported skew plates. In: Proceedings of the ASCE, J. EM Division, 97, pp 967–979

  16. Xiang Y, Wang CM, Kitipornchai S (1995) Buckling of skew Mindlin plates subjected to in-plane shear loadings. Int J Mech Sci 37:1089–1101

    Article  MATH  Google Scholar 

  17. York CB (1996) Influence of continuity and aspect ratio on the buckling of skew plates and assemblies. Int J Solids Struct 33:2133–2159

    Article  MATH  Google Scholar 

  18. Hamada M (1959) Compressive or shearing buckling load and fundamental frequency of a rhomboidal plate with all edges clamped. Bulletin of JSME 2(8):520–526

    Article  MathSciNet  Google Scholar 

  19. Fried I, Schmitt KH (1972) Numerical results from the application of gradient iterative techniques to the finite element vibration and stability analysis of skew plates. Aeronaut J 76:166–169

    Google Scholar 

  20. Yoshimura Y, Iwata K (1963) Buckling of simply supported oblique plates. J Appl Mech 30:363–366

    Article  Google Scholar 

  21. Durban D (1998) Plastic buckling of plates and shells. AIAA Paper 97-1245 NACA/CP 206280:293–310

    Google Scholar 

  22. Durban D, Zuckerman Z (1999) Elastoplastic buckling of rectangular plates in biaxial compression/tension. Int J Mech Sci 41:751–765

    Article  MATH  Google Scholar 

  23. Wang CM, Xiang Y, Chakrabarty J (2001) Elastic/plastic buckling of thick plates. Int J Solids Struct 38:8617–8640

    Article  MATH  Google Scholar 

  24. Wang CM, Aung TM (2007) Plastic buckling analysis of thick plates using p-Ritz method. Int J Solids Struct 44:6239–6255

    Article  MATH  Google Scholar 

  25. Lotfi S, Azhari M, Heidarpour A (2011) Inelastic initial local buckling of skew thin thickness-tapered plates with and without intermediate supports using the isoparametric spline finite strip method. Thin-Walled Struct 49:1475–1482

    Article  Google Scholar 

  26. Jaberzadeh E, Azhari M, Boroomand B (2013) Inelastic buckling of skew and rhombic thin thickness-tapered plates with and without intermediate supports using the element-free Galerkin method. Appl Math Model 37:6838–6854

    Article  MathSciNet  Google Scholar 

  27. Bellman RE, Casti J (1971) Differential quadrature and long-term integration. J Math Anal Appl 34:235–238

    Article  MATH  MathSciNet  Google Scholar 

  28. Bert CW, Malik M (1996) Differential quadrature method in computational mechanics: a review, ASME. Appl Mech Rev 49:1–28

    Article  Google Scholar 

  29. Wu TY, Liu GR (1999) A differential quadrature as a numerical method to solve differential equations. Comput Mech 24:197–205

    Article  MATH  MathSciNet  Google Scholar 

  30. Shu C (2000) Differential quadrature and its application in engineering. Springer, New York

    Book  MATH  Google Scholar 

  31. Shu C, Richards BE (1992) Application of generalized differential quadrature to solve two-dimensional incompressible Navier Stokes equations. Int J Numer Methods Fluids 15:791–798

    Article  MATH  Google Scholar 

  32. Shu C, Chen H, Du Xue H (2001) Numerical study of grid distribution effect on accuracy of DQ analysis of beams and plates by error estimation of derivative approximation. Int J Numer Methods Eng 51:159–179

    Article  MATH  Google Scholar 

  33. Anderson RA, Anderson (1956) Correlation of crippling strength of plate structures with material properties. NACA Technical Note 3600, Washington DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kadkhodayan.

Additional information

Technical Editor: Lavinia Maria Sanabio Alves Borges.

Appendices

Appendix (A): The boundary conditions in this study

  1. (a)

    Clamped edge (C)

  • for \(\xi\) = 0 and \(\xi\) = a

    $$w_{1j} = w_{{N_{\xi } j}} = 0,\quad \varphi_{1j}^{\xi } = \varphi_{{N_{\xi } j}}^{\xi } = 0,\quad \varphi_{1j}^{\eta } = \varphi_{{N_{\xi } j}}^{\eta } = 0,\quad \quad j = 1,\theta, \ldots ,N_{\eta } .$$
    (A.1)
  • for \(\eta\) = 0 and \(\eta\) = b

    $$w_{i1} = w_{{iN_{\eta } }} = 0,\quad \varphi_{i1}^{\xi } = \varphi_{{iN_{\eta } }}^{\xi } = 0,\quad \varphi_{i1}^{\eta } = \varphi_{{iN_{\eta } }}^{\eta } = 0,\quad \quad i = 1, \ldots ,N_{\xi } .$$
    (A.2)
  1. (b)

    Simply supported edge (S)

  • for \(\xi\) = 0 and \(\xi\) = a

    $$\begin{gathered} w_{1j} = w_{{N_{\xi } j}} = 0,\quad \varphi_{1j}^{\eta } = \varphi_{{N_{\xi } j}}^{\eta } = 0,\quad \quad i = 1, \ldots ,N_{\xi } ,\;j = 1, \ldots ,N_{\eta } . \hfill \\ (\alpha \cos^{2} (\theta ) + \beta \sin^{2} (\theta ))\sum\limits_{m = 1}^{{N_{\xi } }} {A_{im}^{\xi } } \varphi_{mj}^{\xi } - \beta \sin (\theta )\left(\sum\limits_{m = 1}^{{N_{\xi } }} {A_{im}^{\xi } } \varphi_{mj}^{\eta } + \sum\limits_{n = 1}^{{N_{\eta } }} {A_{jn}^{\eta } } \varphi_{in}^{\xi } \right) + \beta \sum\limits_{n = 1}^{{N_{\eta } }} {A_{jn}^{\eta } } \varphi_{in}^{\eta } = 0, \hfill \\ \end{gathered}$$
    (A.3)
  • for \(\eta\) = 0 and \(\eta\) = b

    $$\begin{gathered} w_{i1} = w_{{iN_{\eta } }} = 0,\quad \varphi_{i1}^{\xi } = \varphi_{{iN_{\eta } }}^{\xi } = 0,\quad \quad i = 1, \ldots ,N_{\xi } ,\;j = 1, \ldots ,N_{\eta } . \hfill \\ (\beta \cos^{2} (\theta ) + \gamma \sin^{2} (\theta ))\sum\limits_{m = 1}^{{N_{\xi } }} {A_{im}^{\xi } } \varphi_{mj}^{\xi } - \gamma \sin (\theta )\left(\sum\limits_{m = 1}^{{N_{\xi } }} {A_{im}^{\xi } } \varphi_{mj}^{\eta } + \sum\limits_{n = 1}^{{N_{\eta } }} {A_{jn}^{\eta } } \varphi_{in}^{\xi }\right ) + \gamma \sum\limits_{n = 1}^{{N_{\eta } }} {A_{jn}^{\eta } } \varphi_{in}^{\eta } = 0. \hfill \\ \end{gathered}$$
    (A.4)

Appendix (B): The grid points employed in the computations are designed as follow: [30]

$$\xi_{i} = - \cos \left(\frac{i - 1}{{N_{\xi } - 1}}\pi \right), \quad i = 1,2,.. \ldots ,N_{\xi } .$$
(B.1)
$$\xi_{i} = \frac{1}{2}\left(1 - \cos\left (\frac{i - 1}{{N_{\xi } - 3}}\pi \right)\right), \quad i = 3, \ldots ..,N_{\xi } - 2.$$
(B.2)
$$\xi_{i} = \frac{1}{2}\left(1 - \cos \left(\frac{i - 2}{{N_{\xi } - 3}}\pi \right)\right), \quad i = 1,2, \ldots ..,N_{\xi } .$$
(B.3)
$$\xi_{i} = \frac{1}{2}\left(1 - \cos \left(\frac{2i - 1}{{2N_{\xi } }}\pi \right)\right), \quad i = 1,2,.. \ldots ,N_{\xi } .$$
(B.4)

The distributions of grid spacing of Chebyshev–Gauss–Lobatto (C-G-L) have the best convergence and highest accuracy [31, 32]. In this study, the following relation is used

$$\begin{gathered} \xi_{i} = \frac{1}{2}\left(1 - \cos \left(\frac{i - 1}{{N_{\xi } - 1}}\pi \right)\right),\,\,i = 1,2,.. \ldots ,N_{\xi } . \hfill \\ \eta_{j} = \frac{1}{2}\left(1 - \cos \left(\frac{j - 1}{{N_{\eta } - 1}}\pi \right) \right), \quad j = 1,2,.. \ldots ,N_{\eta } . \hfill \\ \end{gathered}$$
(B.5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maarefdoust, M., Kadkhodayan, M. Elastic/plastic buckling analysis of skew plates under in-plane shear loading with incremental and deformation theories of plasticity by GDQ method. J Braz. Soc. Mech. Sci. Eng. 37, 761–776 (2015). https://doi.org/10.1007/s40430-014-0203-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-014-0203-6

Keywords

Navigation