Skip to main content
Log in

Characterisation of the Interfacial Adhesion of the Different Components in Wood–Plastic Composites with AFM

  • Systematic Student Review
  • Published:
Springer Science Reviews

Abstract

The search for innovative solutions for the reuse of solid residues has intensified with growing environmental issues and the increasing cost of most raw materials, leading to the design of eco-friendly composite materials, such as wood–plastic composites (WPCs). These materials combine the stability of wood fibres with the durability of plastic, allowing for a wide range of applications, whilst simultaneously offering the possibility of utilising waste products from the forest/wood industry and recycled plastic. Waste products that otherwise incur cost for disposal therefore become a sustainable material resource for new products. Natural fibres offer a number of advantages over synthetic fibres and are seen as a “green” alternative to other reinforcements. Commonly, the fibre-matrix adhesion in WPCs is improved by using compatibilisers that bond to the polar wood fibres and the non-polar polymer matrix. However, the problem with these is that good dispersion is not always achieved as it depends on the adhesion properties of three individual components in the WPC, which might lead to poor mechanical properties of the WPC. The ability of the atomic force microscope (AFM) to create 3D images of topography and various interaction forces with molecular resolution made it a valuable tool for the analysis of adhesion properties in WPCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amelinckx S, van Dyck D, van Landuyt J, van Tendeloo G (1997) Handbook of microscopy: applications in materials science, solid-state physics and chemistry, methods II. VCH Verlagsgesellschaft mbH, Germany

    Google Scholar 

  2. Aramguren MI, Marcovich NE, Reboredo MM (2000) Composites made from lignocellulosics and thermoset polymers. Mol Cryst Liq Cryst 35:95–108

    Article  Google Scholar 

  3. Avila AF, Paulo CM, Santos DB, Fari CA (2003) Mater Charact 50:281–291

    Article  CAS  Google Scholar 

  4. Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442. doi:10.1016/j.matdes.2012.11.025

    Article  CAS  Google Scholar 

  5. Balasuriya PW, Ye L, Mai YW (2001) Mechanical properties of wood flake-polyethylene composites. Part I: e effects of processing methods and matrix melt flow behaviour. Compos A 32:619–629

    Article  Google Scholar 

  6. Bar GK, Meyers GF (2004) The Application of atomic force microscopy to the characterization of industrial polymer materials. Mrs Bulletin, pp 464–470. www.mrs.org/publications/bulletin

  7. Beaugrand J, Nottez M, Konnerth J, Bourmaud A (2014) Multi-scale analysis of the structure and mechanical performance of woody hemp core and the dependence on the sampling location. Ind Crops Prod 60:193–204. doi:10.1016/j.indcrop.2014.06.019

    Article  CAS  Google Scholar 

  8. Bhandari NL, Thomas S, Das CK, Adhikari R (2012) Role of compatibilizer on morphological and mechanical properties of low cost polypropylene/wood flour composites. J Nepal Chem Soc 29:113–120

    CAS  Google Scholar 

  9. Binnig G, Rohrer H (1982) Heiv. Phys. Acta 55:726

    CAS  Google Scholar 

  10. Binnig G, Quate CF, Gerber C (1986) Phys Rev Lett 56:930

    Article  PubMed  Google Scholar 

  11. Bledzki AK, Sperber VE, Faruk O (2002) Natural and wood fibre reinforcement in polymers. Rapra Rev. Rep., 13(8)

  12. Burnham NA, Colton RJ (1989) Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope. J Vac Sci Technol, A 7(4):2906–2913

    Article  CAS  Google Scholar 

  13. Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59:1–152. doi:10.1016/j.surfrep.2005.08.003

    Article  CAS  Google Scholar 

  14. Caraschi J, Leao AL (2000) Wood flour/polyhydroxybutyrate composites. In Natural polymers and composites conference proceedings, Sao Pedro, 14th–17th May, pp 426–430

  15. Caulfield D, Clemons C, Rowell RM (2010) Sustainable development in the forest products industry. Edições Universidade Fernando Pessoa, Porto

    Google Scholar 

  16. Celluwood (2008) Technologies and products of natural fibre composites. CIP-EIP-Eco-Innovation-2008: Pilot and market replication projects—ID: ECO/10/277331. Technical progress report

  17. Chau A, Régnier S, Delchambre A, Lambert P (2010) Theoretical and experimental study of the influence of AFM tip geometry and orientation on capillary force. J Adhes Sci Technol 24:2499–2510. doi:10.1163/016942410X508307

    Article  CAS  Google Scholar 

  18. Chengzhi C, Almdal K, Poulsen L, Plackett D (2001) Conifer fibres as reinforcing materials for polypropylene-based composites. J Appl Polym Sci 80(14):33–41

    Google Scholar 

  19. Chen-Jui H, Jenn-Fong K, Jaine-Ming H (2000) Wood flour reinforced polystyrene composite using SEBS-G-MA AS compatibilizer. In Antec 2000 conference proceedings, Orlando, Fl., 7–11th May, paper 724

  20. Clemons C (2002) Wood plastic composites in the United States: the interfacing of two industries. Forest Prod J 52(6):10–18

    Google Scholar 

  21. Cyras VP, Iannace S, Kenny JM (2001) Relationship between processing and properties of biodegradable Composites based on plc/starch matrix and sisal fibres. Polym Compos 22(1):104–110

    Article  CAS  Google Scholar 

  22. Derjaguin BV, Rabinovich YI, Churaev NV (1978) Direct measurement of molecular forces. Nature 272(5651):313–318

    Article  CAS  Google Scholar 

  23. DiNardo JN (1994) Nanoscale characterization of surfaces and interfaces. VCH Verlagsgesellschaft mbH, D-69451 Weinheim

  24. Dittenber DB, GangaRao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos A 43:1419–1429. doi:10.1016/j.compositesa.2011.11.019

    Article  Google Scholar 

  25. Dvir H, Jopp J, Gottlieb M (2006) Estimation of polymer–surface interfacial interaction strength by a contact AFM technique. J Colloid Interface Sci 304:58–66. doi:10.1016/j.jcis.2006.08.053

    Article  CAS  PubMed  Google Scholar 

  26. Eaton P, West P (2010) Atomic force microscopy. Oxford University Press, New York

    Book  Google Scholar 

  27. Fahlen J, Salmen L (2005) Pore and matrix distribution in the fibre wall revealed by atomic force microscopy and image analysis. Biomacromolecules 6:433–438

    Article  CAS  PubMed  Google Scholar 

  28. Frybort S, Obersriebnig M, Muller U, Gindl-Altmutter W, Konnerth J (2014) Variability in surface polarity of wood by means of AFM adhesion force mapping. Colloids and Surf A 457:82–87

    Article  CAS  Google Scholar 

  29. Ganser C, Hirn U, Rohm S, Schennach R, Teichert C (2014) AFM nanoindentation of pulp fibers and thin cellulose films at varying relative humidity. Holzforschung 68(1):53–60

    Article  CAS  Google Scholar 

  30. George M, Mussone PG, Abboud Z, Bressler DC (2014) Characterization of chemically and enzymatically treated hemp fibres using atomic force microscopy and spectroscopy. Appl Surf Sci 314:1019–1025

    Article  CAS  Google Scholar 

  31. Gnanou Y, Fontanille M (2008) Organic and physical chemistry of polymers. Wiley, Hoboken

    Book  Google Scholar 

  32. Hall A (2013). An introduction to atomic force microscopy. http://amyhallr.wordpress.com/2013/03/15/atomic-force-microscopy/. Accessed 20 May 2014

  33. Hamada H, Denault J, Mohanty AK, Li Y, Aly-Hassan MS (2013) Natural fibre composites. Adv Mech Eng. doi:10.1155/2013/569020

    Google Scholar 

  34. Heuer D, Albert M (2000) Effects of long term ultraviolet radiation on the mechanical Properties of wood flour filled recycled HDPE. In Antec 2000 conference proceedings, Orlando, FL, 7th–11th May, paper 422

  35. Hoa SV (2009) Principles of the manufacturing of composite materials. DEStech Publications, Inc. Pennsylvania

  36. Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic Press, USA

    Google Scholar 

  37. Jacoby P, Sullivan R, Crostic W (2001) Wood Filled High Crystallinity Polypropylene. In Antec 2001 conference proceedings, Dallas, TX, 6th–10th May, paper 492

  38. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond Ser A 324(1558):301–313

    Article  CAS  Google Scholar 

  39. Jose JP, Malhotra KS, Thomas S, Joseph K, Koichi Goda K, Sreekala MS (2012) Advances in polymer composites: macro and microcomposites—state of the art, new challenges, and opportunities. Polym Compos vol 1, pp 1–16. Wiley, Hoboken

  40. JPK Instruments (nd) A practical guide to AFM force spectroscopy and data analysis. Technical Note, JPK Instruments AG. pp 1–8, www.jpk.com

  41. Keplinger T, Konnerth J, Aguie-Beghin V, Ruggeberg M, Gielinger N, Burgert I (2014) A zoom into the nanoscale texture of secondary cell walls. Plant Methods 10:1, 1. http://www.plantmethods.com/content/10/1/1

  42. Khan MA, Balo SK, Ali KMI (1999) Jute-reinforced urethane polymer composite under gamma radiation. Polym Plastics Technol Eng 38(4):767–782

    Article  CAS  Google Scholar 

  43. Kim JP, Yoon TH, Mun SP, Rhee JM, Lee JS (2006) Wood–polyethylene composites using ethylene–vinyl alcohol copolymer as adhesion promoter. Bioresour Technol 97(3):494–499

    Article  CAS  PubMed  Google Scholar 

  44. Klash A (2010) Localisation and Quantification of Chemical Functional Groups on Pulp Fibres. Dissertation presented for the degree of Doctor of Philosophy (Polymer Science) at the University of Stellenbosch

  45. Klash A, Ncube E, du Toit B, Meincken M (2010) Determination of the cellulose and lignin content on wood fibre surfaces of eucalypts as a function of genotype and site. Eur J Forest Res 129:741–748. doi:10.1007/s10342-010-0380-5

    Article  CAS  Google Scholar 

  46. Klash A, Ncube E, Meincken M (2010) Localization and attempted quantification of various functional groups on pulpwood fibres. Appl Surf Sci 255:6318–6324. doi:10.1016/j.apsusc.2009.02.009

    Article  Google Scholar 

  47. Klysov AA (2007) Wood-plastic composites. Wiley, Hoboken

    Book  Google Scholar 

  48. Le Duigou A, Bourmaud A, Balnois E, Davies P, Baley C (2012) Improving the interfacial properties between flax fibres and PLLA by a water fibre treatment and drying cycle. Ind Crops Prod 39:31–39. doi:10.1016/j.indcrop.2012.02.001

    Article  Google Scholar 

  49. Le Duigou A et al (2014) A multi-scale study of the interface between natural fibres and a biopolymer. Compos A 65:161–168. doi:10.1016/j.compositesa.2014.06.010

    Article  Google Scholar 

  50. Le Duigou A, Kervoelen A, Le Grand A, Nardin M, Baley C (2014) Interfacial properties of flax fibre–epoxy resin systems: existence of a complex interphase. Compos Sci Technol 100:152–157. doi:10.1016/j.compscitech.2014.06.009

    Article  Google Scholar 

  51. Leite FL, Herrmann PSP (2005) Application of atomic force spectroscopy (AFS) to studies of adhesion phenomena: a review. J. Adhesion Sci. Technol. 19(3–5):365–405

    Article  CAS  Google Scholar 

  52. Lu JZ, Wu Q, McNabb HS (2000) Chemical coupling in wood fibre and polymer composites: a review of coupling agents and treatments. Wood and Fibre Sci 32(1):88–104

    Google Scholar 

  53. Lucas AA, Ambrosio DJ, Bonse BC, Bettini HSP (2011) Natural fibre polymer composites technology applied to the recovery and protection of tropical forests allied to the recycling of industrial and urban residues. In Tech, http://www.intechopen.com/books/advances-in-composite-materials-analysis-of-natural-and-man-madematerals/natural-fibre-polymer-composites-technology-applied-to-the-recovery-and-protection-of-tropicalfores

  54. Magonov S, Heaton GM (2010) Applications of AFM for polymers. Bruker Cooperation, Billerica

  55. Magonov SN, Whangbo MH (1996) Surface analysis with STM and AFM. VCH Verlagsgesellschaft mbH, D-69451 Weinheim

  56. Mallick PK (2007) Fibre-reinforced composites: materials, manufacturing, and design, 3rd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  57. Marcovich NE, Ostrovsky AN, Aranguren MI, Reboredo MM (2000) Woodflour/sisal fibres as hybrid reinforcement of thermoset polymers. In Natural Polymers and Composites. conference proceedings, Sao Pedro, 14th–17th May 2000, pp 419–421

  58. Masuelli AM (2013) Introduction of fibre-reinforced polymers—polymers and composites: concepts. Prop Process. doi:10.5772/54629

    Google Scholar 

  59. Matoke GK, Owido SFO, Nyaanga DM (2013) Effect of production methods and material ratios on mechanical properties of the composites. J Eng Arch 1(1):24–33

    Google Scholar 

  60. Maver U, Maver T, Peršin Z, Mozetič M, Vesel A, Gaberšček M, Stana-Kleinschek K (2013) Polymer characterization with the atomic force microscope. InTech, 113–132. http://dx.doi.org/10.5772/51060

  61. McDowell GWG, Orr JF, Kissick J, Crawford RJ (2001) Preliminary investigation into the use of wood fibres as a filler in the rotational molding of polyethylene. In Antec 2001 conference proceedings, Dallas, TX, 6–10th May, paper 253

  62. Meincken M (2007) Atomic force microscopy to determine the surface roughness and surface polarity of cell types of hardwoods commonly used for pulping. S Afr J Sci 103:4–6

    Google Scholar 

  63. Meincken M, Matyumza NC (2008) Surface polarity determination of wood fibres after different pre-treatments and bisulphite pulping. S Afr J Sci 104:453–456

    Article  CAS  Google Scholar 

  64. Meincken M, Sanderson RD (2004) Advantages of scanning probe microscopy in polymer science. S Afr J Sci 100:256–260

    CAS  Google Scholar 

  65. Meyer E, Hug HJ, Bennewitz R (2004) Scanning probe microscopy: the lab on a tip. Springer, Berlin

    Book  Google Scholar 

  66. Mishra S, Misra M, Tripathy SS, Nayak SK, Mohanty AK (2001) Potentiality of pineapple leaf fibre as reinforcement in palf-polyester composite: surface modification and mechanical performance. J Reinf Plast Compos 20(4):321–334

    Article  CAS  Google Scholar 

  67. Mohanty AK, Manjusri Misra M, Drzal LT (2005) Natural fibres, biopolymers, and biocomposites. CRC Press, Boca Raton

    Book  Google Scholar 

  68. Nair SS, Wang S, Hurley D (2008) Evaluation of interphase properties in fibre reinforced polymer composite using contact resonance force microscopy. In Proceedings of the 51st international convention of society of wood science and technology, November 10–12, 2008 Concepción, CHILE, Paper WS-65 1 of 9

  69. Ndlovu SS, van Reenen AJ, Luyt AS (2013) LDPE–wood composites utilizing degraded LDPE as compatibilizer. Compos A 51:80–88. doi:10.1016/j.compositesa.2013.04.005

    Article  CAS  Google Scholar 

  70. Niska OK, Sain M (2008) Wood-polymer composites. Woodhead Publishing Limited, England

    Book  Google Scholar 

  71. Noy A, Vezenov DV, Lieber CM (1997) Chemical force microscopy. Annu Rev Mater Sci 27:381–421

    Article  CAS  Google Scholar 

  72. Pelin IM, Piednoir A, Machon D, Farge P, Pirat C, Ramos SMM (2012) Adhesion forces between AFM tips and superficial dentin surfaces. J Colloid Interface Sci 376:262–268. doi:10.1016/j.jcis.2012.03.013

    Article  CAS  PubMed  Google Scholar 

  73. Persson BN, Ganser C, Schmied F, Teichert C, Schennach R, Gilli E, Hirn U (2013) Adhesion of cellulose fibers in paper. J Phys: Condens Matter 25(4):045002

    Google Scholar 

  74. Pickering KL (2008) Properties and performance of natural-fibre composites. Woodhead Publishing Limited, England

    Book  Google Scholar 

  75. Pracella M, Haque MM, Alvarez V (2010) Functionalization, compatibilization and properties of polyolefin composites with natural fibres. Polymers 2:554–574. doi:10.3390/polym2040554

    Article  CAS  Google Scholar 

  76. Prater CB, Maivald PG, Kjoller KJ, Heaton MG (1995) Probing nano-scale forces with the atomic force microscope. Veeco Metrology Group, Digital Instruments, Inc. pp 1–16

  77. Roa JJ, Oncins G, Díaz J, Capdevila XG, Sanz F, Segarra M (2011) Study of the friction, adhesion and mechanical properties of single crystals, ceramics and ceramic coatings by AFM. J Eur Ceram Soc 31:429–449. doi:10.1016/j.jeurceramsoc.2010.10.023

    Article  CAS  Google Scholar 

  78. Rout J, Misra M, Tripathy SS, Nayak SK, Mohanty AK (2001) Influence of fibre treatment on the performance of coir-polyester composites. Compos Sci Technol 61(9):1303–1310

    Article  CAS  Google Scholar 

  79. Rowell RM (2005) Handbook of wood chemistry and wood composites. CRC Press, USA

    Google Scholar 

  80. Rowell MR, Sanadi AR, Caulfield DF, Jacobson ER (1997) Utilization of natural fibres in plastic composites: problems and opportunities. Lignocellulosic-Plastics Composites, 23–51

  81. Rowell RM, Lange SE, Jacobson RE (2000) Weathering performance of plant fibre/thermoplastic composites. Mol Cryst Liq Cryst 353:85–94

    Article  CAS  Google Scholar 

  82. Rozman HD, Tay GS, Kumar RN, Abubakar A, Ismail H, Ishak ZAM (1999) Polypropylene hybrid composites: a preliminary study on the use of glass and coconut fibre as reinforcements in polypropylene composites. Polym Plastics Technol Eng 38(5):997–1011

    Article  CAS  Google Scholar 

  83. Schmied FJ, Teichert C, Kappel L, Hirn U, Schennach R (2012) Joint strength measurements of individual fiber-fiber bonds: an atomic force microscopy based method. Rev Sci Instrum 83(7):073902

    Article  PubMed  Google Scholar 

  84. Schmied FJ, Teichert C, Kappel L, Hirn U, Bauer W, Schennach R (2013) What holds paper together: Nanometre scale exploration of bonding between paper fibres. Scientific reports, 3

  85. Shahin V, Ludwig Y, Schafer C, Nikova D, Oberleithner H (2005) Glucocorticoids remodel nuclear envelope structure and permeability. J Cell Sci 118:2881–2889. doi:10.1242/jcs.02429

    Article  CAS  PubMed  Google Scholar 

  86. Shebani A, van Reenen A, Meincken M (2012) Using extractive-free wood as reinforcement in wood-LLDP composites. J Reinf Plast Compos 31(4):225–232. doi:10.1177/0731684411434369

    Article  CAS  Google Scholar 

  87. Singha AS, Thakur Vijay K (2008) Mechanical properties of natural fibre reinforced polymer composites. Bull. Mater Sci 31(5):791–799

    Article  CAS  Google Scholar 

  88. Starostina N, West P (2006) Part II: sample preparation for AFM particle characterization. Pacific Nanotechnology, Santa Clara

    Google Scholar 

  89. Stoeckel F, Konnerth J, Gindl-Altmutter W (2013) Mechanical properties of adhesives for bonding wood: a review. Int J Adhes Adhes 45:32–41. doi:10.1016/j.ijadhadh.2013.03.013

    Article  CAS  Google Scholar 

  90. Summerscales J, Virk AS, Hall W (2013) Variability in, and property prediction for, natural fibre composites. In 9th international conference on composite science and technology (ICCST 9):2020 scientific and industrial challenges, Sorrento, 24–26 April

  91. Tangram Technology (2002) Wood-plastic composites; a technical review of materials, processes and applications. Tangram Technology Ltd. UK. www.tangram.co.uk

  92. Van de Velde K, Kiekens P (2001) Influence of fibre and matrix modifications on mechanical and physical properties of flax fibre reinforced poly(propylene). Macromol Mater Eng 286(4):237–242

    Article  Google Scholar 

  93. Van Den Oever MJA, Bos HL, Van Kemenade MJJM (2000) Influence of the physical structure of flax fibres on the mechanical properties of flax fibre reinforced polypropylene composites. Appl Compos Mater 7(5–6):387–402

    Article  Google Scholar 

  94. Vancso GJ, Hillborg H, Schönherr H (2005) Chemical composition of polymer surfaces imaged by atomic force microscopy and complementary approaches. Adv Polym Sci 182:55–129. doi:10.1007/b135560

    Article  CAS  Google Scholar 

  95. Veeco Instruments (2005) A practical guide to scanning probe microscopy SPM. Veeco Instruments Inc. pp 1–29, www.veeco.com

  96. Wallace JM (2012) Applications of atomic force microscopy for the assessment of nanoscale morphological and mechanical properties of bone. Bone 50:420–427. doi:10.1016/j.bone.2011.11.008

    Article  PubMed  Google Scholar 

  97. Yan D, Li K (2013) Evaluation of inter-fibre bonding in wood pulp fibres by chemical force microscopy. J Mater Sci Res 2(1):23–33. doi:10.5539/jmsr.v2n1p23

    CAS  Google Scholar 

  98. Yang HS, Kim HJ, Park HJ, Lee BJ, Hwang TS (2007) Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Compos Struct 77(1):45–55

    Article  Google Scholar 

  99. Yu L (2009) Biodegradable polymer blends and composites from renewable resources. Wiley, Hoboken

    Google Scholar 

  100. Zhao X, Li KYR, Bai SH (2014) Mechanical properties of sisal fiber reinforced high density polyethylene composites: effect of fiber content, interfacial compatibilization, and manufacturing process. Compos A 65:169–174. doi:10.1016/j.compositesa.2014.06.017

    Article  CAS  Google Scholar 

  101. Zhou HB, Gotzinger M, Peukert W (2003) The influence of particle charge and roughness on particle-substrate adhesion. Powder Technol 135:82–91

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Research Foundation (NRF) of South Africa (Grant number 81012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Effah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Endorsed by Martina Meincken.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Effah, B., Van Reenen, A. & Meincken, M. Characterisation of the Interfacial Adhesion of the Different Components in Wood–Plastic Composites with AFM. Springer Science Reviews 3, 97–111 (2015). https://doi.org/10.1007/s40362-015-0032-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40362-015-0032-8

Keywords

Navigation