Skip to main content
Log in

Adjusting a 2D Helmert transformation within a Gauss–Helmert Model with a singular dispersion matrix where BQ is of smaller rank than B

  • Original Study
  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

The case of a singular dispersion matrix within the Gauss–Helmert Model has been considered before, most recently even allowing the rank of BQ to be smaller than the rank of B. In this contribution the emphasis is shifted towards an illuminating example, the 2D Helmert transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aitken AC (1935) On least squares and linear combinations of observations. Proc R Soc Edinb 55:42–48

    Article  Google Scholar 

  • Benning W (2007) Statistics in geodesy, geoinformation and civil engineering, 2nd edn. Herbert Wichmann Verlag, Heidelberg (in German)

    Google Scholar 

  • Bjerhammar A (1973) Theory of errors and generalized matrix inverses. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  • Bleich U, Illner M (1989) Rigorous solution of the spatial coordinate transformation by iteration. Allgem Verm Nachr 96:133–144 (in German)

    Google Scholar 

  • Chang G (2015) On least-squares solution to 3D similarity transformation problem under Gauss–Helmert model. J Geod 89:573–576

    Article  Google Scholar 

  • Deming WE (1931) XI. The application of least squares. Lond Edinb Dublin Philos Mag J Sci 11(68):146–158

    Article  Google Scholar 

  • Deming WE (1934) LXVII. On the application of least squares—II. Lond Edinb Dublin Philos Mag J Sci 17(114):804–829

    Article  Google Scholar 

  • Fang X (2014) A total least-squares solution for geodetic datum transformations. Acta Geodaet Geophys 49:189–207

    Article  Google Scholar 

  • Felus Y, Schaffrin B (2005) Performing similarity transformations using the Error-in-Variables Model. In: Proceedings of the ASPRS meeting, Washington, DC (on CD)

  • Grafarend E, Schaffrin B (1993) Adjustment computations in linear models. BI Wissenschaftsverlag, Mannheim (in German)

    Google Scholar 

  • Jazaeri S, Schaffrin B, Snow K (2014) On Weighted Total Least-Squares adjustment with multiple constraints and singular dispersion matrices. Z Vermess 139:229–240

    Google Scholar 

  • Koch KR, Fröhlich H, Bröker G (2000) Transformation of spatial variable coordinates. Allgem Verm Nachr 107:293–295 (in German)

    Google Scholar 

  • Lenzmann L, Lenzmann E (2004) Rigorous adjustment of the nonlinear Gauss–Helmert Model. Allgem Verm Nachr 111:68–73 (in German)

    Google Scholar 

  • Mikhail EM, Gracie G (1981) Analysis and adjustment of survey measurements. Van Nostrand Reinhold Company, New York

    Google Scholar 

  • Neitzel F (2010) Generalization of Total Least-Squares on example of unweighted and weighted similarity transformation. J Geod 84:751–762

    Article  Google Scholar 

  • Neitzel F, Schaffrin B (2016) On the Gauss–Helmert model with a singular dispersion matrix where BQ is of smaller rank than B. J Comput Appl Math 291:458–467

    Article  Google Scholar 

  • Niemeier W (2008) Adjustment computation, 2nd edn. Walter de Gruyter, Berlin (in German)

    Google Scholar 

  • Perelmuter A (1981) Adjustment with a singular weight matrix. Allgem Verm Nachr 88:239–242

    Google Scholar 

  • Pope AJ (1972) Some pitfalls to be avoided in the iterative adjustment of nonlinear problems. In: Proceedings of the 38th annual meeting of the American Society of Photogrammetry, Washington, DC, p 449–477

  • Schaffrin B (1989) Advanced adjustment computations, lecture notes. Dept. of Geodetic Science and Surveying, The Ohio State University, Columbus

    Google Scholar 

  • Schaffrin B (2003) Reproducing estimators via least squares: an optimal alternative to the Helmert transformation. In: Grafarend EW, Krumm FW, Schwarze VS (eds) Geodesy—the Challenge of the 3rd millennium. Springer, Berlin, pp 387–392

    Chapter  Google Scholar 

  • Schaffrin B (2015) Adjusting the errors-in-variables model: linearized least-squares vs. nonlinear total least-squares. In: Sneeuw N, Novak P, Crespi M, Sanso F (eds) VIII Hotine-Marussi Symposium on Mathematical Geodesy (Rome/Italy, June 2013). IAG Symposia, vol 142. Springer, Berlin, pp 301–307

  • Schaffrin B, Snow K (2010) Total Least-Squares regularization of Tykhonov type and an ancient race track in Corinth. Linear Algebra Appl 432:2061–2076

    Article  Google Scholar 

  • Schaffrin B, Wieser A (2011) Total Least-Squares adjustment for condition equations. Stud Geophys Geodaet 55:529–536

    Article  Google Scholar 

  • Schaffrin B, Neitzel F, Uzun S, Mahboub V (2012) Modifying Cadzow’s algorithm to generate the optimal TLS-Solution for the structured EIV-Model of a similarity transformation. J Geod Sci 2:98–106

    Google Scholar 

  • Schaffrin B, Snow K, Neitzel F (2014) On the errors-in-variables model with singular dispersion matrices. J Geod Sci 4:28–36

    Google Scholar 

  • Teunissen P (1988) The nonlinear 2D symmetric Helmert transformation. An exact least-squares solution. J Geod 62:1–16

    Google Scholar 

  • Wolf H (1979) Singular covariances in the Gauss–Helmert Model. Z Vermess 104:437–442 (in German)

    Google Scholar 

  • Wolf PR, Ghilani CD (1997) Adjustment computations: statistics and least squares in surveying and GIS. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

The first author would like to gratefully acknowledge the support of a Feodor-Lynen Research Fellowship from the Alexander-von-Humboldt Foundation (Germany), and the School of Earth Sciences at the Ohio State University (Columbus/OH, USA), with Prof. Schaffrin as his host. This manuscript was actually completed when the second author visited Prof. Neitzel, again with funds of the AvH-Foundation, which is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Neitzel.

Appendix

Appendix

Estimated dispersion matrix of the estimated parameters \( \hat{\xi }_{0} ,\;\hat{\xi }_{1} ,\;\hat{\xi }_{2} ,\;\hat{\xi }_{3} , \) respectively for \( \hat{\omega } \) and \( \hat{\alpha }, \) from inverting (2.3), including their covariances, for the numerical example:

$$ \begin{aligned} \hat{D}\left\{ {\left[ {\begin{array}{rrrr} {\hat{\xi }_{0} } \\ {\hat{\xi }_{1} } \\ {\hat{\xi }_{2} } \\ {\hat{\xi }_{3} } \\ \end{array} } \right]} \right\} & = \left[ {\begin{array}{*{20}r} {1.673{\text{E}}{-}05} & {1.018{\text{E}}{-}05} & { - 4.469{\text{E}}{-}08} & {7.078{\text{E}}{-}09} \\ {1.018{\text{E}}{-}05} & {6.191{\text{E}}{-}06} & { - 2.718{\text{E}}{-}08} & {4.306{\text{E}}{-}09} \\ { - 4.469{\text{E}}{-}08} & { - 2.718{\text{E}}{-}08} & {1.194{\text{E}}{-}10} & { - 1.891{\text{E}}{-}11} \\ {7.078{\text{E}}{-}09} & {4.306{\text{E}}{-}09} & { - 1.891{\text{E}}{-}11} & {2.994{\text{E}}{-}12} \\ \end{array} } \right], \\ \hat{D}\left\{ {\left[ {\begin{array}{*{20}r} {\hat{\xi }_{0} } \\ {\hat{\xi }_{1} } \\ {\hat{\omega }} \\ {\hat{\alpha }} \\ \end{array} } \right]} \right\} & = \left[ {\begin{array}{rrrr} {1.673{\text{E}}{-}05} & {1.018{\text{E}}{-}05} & { - 4.524{\text{E}}{-}08} & {3.653{\text{E}}{-}15} \\ {1.018{\text{E}}{-}05} & {6.191{\text{E}}{-}06} & { - 2.752{\text{E}}{-}08} & {2.196{\text{E}}{-}15} \\ { - 4.524{\text{E}}{-}08} & { - 2.752{\text{E}}{-}08} & {1.224{\text{E}}{-}10} & { - 9.849{\text{E}}{-}18} \\ {3.653{\text{E}}{-}15} & {2.196{\text{E}}{-}15} & { - 9.849{\text{E}}{-}18} & {5.159{\text{E}}{-}20} \\ \end{array} } \right]. \\ \end{aligned} $$
(A. 1)

Estimated dispersion matrices for the residuals and their cross-covariance matrix:

$$ \begin{aligned} \hat{D}\left\{ {\tilde{e}_{xy} } \right\} = \left[ {\begin{array}{rrrrr} {1.115{\text{E}}{-}06} & { - 1.577{\text{E}}{-}07} & { - 4.157{\text{E}}{-}07} & { - 1.618{\text{E}}{-}07} & { - 3.294{\text{E}}{-}07} \\ { - 1.577{\text{E}}{-}07} & {9.454{\text{E}}{-}07} & { \, 2.903{\text{E}}{-}07} & { - 4.013{\text{E}}{-}07} & {2.116{\text{E}}{-}07} \\ { - 4.157{\text{E}}{-}07} & {2.903E - 07} & {9.542{\text{E}}{-}07} & {6.724{\text{E}}{-}08} & { - 3.993{\text{E}}{-}07} \\ { - 1.618{\text{E}}{-}07} & { - 4.013{\text{E}}{-}07} & {6.724{\text{E}}{-}08} & {9.942{\text{E}}{-}07} & {4.795{\text{E}}{-}08} \\ { - 3.294{\text{E}}{-}07} & {2.116{\text{E}}{-}07} & { - 3.993{\text{E}}{-}07} & {4.795{\text{E}}{-}08} & {1.020{\text{E}}{-}06} \\ { - 2.431{\text{E}}{-}07} & { - 1.294{\text{E}}{-}07} & { - 2.479{\text{E}}{-}07} & { - 6.001{\text{E}}{-}07} & {1.976{\text{E}}{-}07} \\ { - 1.007{\text{E}}{-}08} & { - 1.241{\text{E}}{-}07} & { - 1.048{\text{E}}{-}07} & {2.315{\text{E}}{-}07} & { - 2.805{\text{E}}{-}07} \\ {1.192{\text{E}}{-}07} & { - 4.400{\text{E}}{-}08} & { - 2.542{\text{E}}{-}07} & { - 3.847{\text{E}}{-}08} & { - 3.876{\text{E}}{-}07} \\ { - 3.602{\text{E}}{-}07} & { - 2.201{\text{E}}{-}07} & { - 3.442{\text{E}}{-}08} & { - 1.848{\text{E}}{-}07} & { - 1.069{\text{E}}{-}08} \\ {4.434{\text{E}}{-}07} & { - 3.707{\text{E}}{-}07} & {1.446{\text{E}}{-}07} & {4.564{\text{E}}{-}08} & { - 6.951{\text{E}}{-}08} \\ \end{array} } \right. \hfill \\ \left. {\begin{array}{rrrrr} { - 2.431{\text{E}}{-}07} & { - 1.007{\text{E}}{-}08} & {1.192{\text{E}}{-}07} & { - 3.602{\text{E}}{-}07} & {4.434{\text{E}}{-}07} \\ { - 1.294{\text{E}}{-}07} & { - 1.241{\text{E}} - 07} & { - 4.400{\text{E}}{-}08} & { - 2.201{\text{E}} - 07} & { - 3.707{\text{E}}{-}07} \\ { - 2.479{\text{E}} - 07} & { - 1.048{\text{E}}{-}07} & { - 2.542{\text{E}}{-}07} & { - 3.442{\text{E}}{-}08} & {1.446{\text{E}}{-}07} \\ { - 6.001{\text{E}}{-}07} & {2.315{\text{E}}{-}07} & { - 3.847{\text{E}}{-}08} & { - 1.848{\text{E}}{-}07} & {4.564{\text{E}}{-}08} \\ {1.976{\text{E}}{-}07} & { - 2.805{\text{E}}{-}07} & { - 3.876{\text{E}}{-}07} & { - 1.069{\text{E}}{-}08} & { - 6.951{\text{E}}{-}08} \\ {1.153{\text{E}}{-}06} & {1.913{\text{E}}{-}07} & { - 3.772{\text{E}}{-}07} & {1.020{\text{E}}{-}07} & { - 4.651{\text{E}}{-}08} \\ {1.913{\text{E}}{-}07} & {7.262{\text{E}}{-}07} & {8.462{\text{E}}{-}08} & { - 3.309{\text{E}}{-}07} & { - 3.833{\text{E}}{-}07} \\ { - 3.772{\text{E}}{-}07} & {8.462{\text{E}}{-}08} & {1.010{\text{E}}{-}06} & {4.380{\text{E}}{-}07} & { - 5.506{\text{E}}{-}07} \\ {1.020{\text{E}} - 07} & { - 3.309{\text{E}}{-}07} & {4.380{\text{E}}{-}07} & {7.362{\text{E}}{-}07} & { - 1.351{\text{E}}{-}07} \\ { - 4.651{\text{E}}{-}08} & { - 3.833{\text{E}}{-}07} & { - 5.506{\text{E}}{-}07} & { - 1.351{\text{E}}{-}07} & {9.222{\text{E}}{-}07} \\ \end{array} } \right], \hfill \\ \end{aligned} $$
(A. 2)
$$ \begin{aligned} \hat{D}\left\{ {\tilde{e}_{xy} } \right\} = \left[ {\begin{array}{rrrrr} {2.991{\text{E}}{-}05} & { - 3.190{\text{E}} - 06} & { - 1.122{\text{E}}{-}05} & { - 4.312{\text{E}}{-}06} & { - 8.240{\text{E}}{-}06} \\ { - 3.190{\text{E}}{-}06} & {2.323{\text{E}}{-}05} & {7.346{\text{E}}{-}06} & { - 9.843{\text{E}}{-}06} & {4.679{\text{E}}{-}06} \\ { - 1.122{\text{E}}{-}05} & {7.346{\text{E}}{-}06} & {2.410{\text{E}}{-}05} & {1.490{\text{E}}{-}06} & { - 9.628{\text{E}}{-}06} \\ { - 4.312{\text{E}}{-}06} & { - 9.843{\text{E}}{-}06} & {1.490{\text{E}}{-}06} & {2.614{\text{E}}{-}05} & {2.163{\text{E}}{-}06} \\ { - 8.240{\text{E}}{-}06} & {4.679{\text{E}}{-}06} & { - 9.628{\text{E}}{-}06} & {2.163{\text{E}}{-}06} & {2.481{\text{E}}{-}05} \\ { - 7.043{\text{E}}{-}06} & { - 3.590{\text{E}}{-}06} & { - 5.465{\text{E}}{-}06} & { - 1.614{\text{E}}{-}05} & {4.314{\text{E}}{-}06} \\ { - 2.618{\text{E}}{-}07} & { - 3.061{\text{E}}{-}06} & { - 2.569{\text{E}}{-}06} & {5.718{\text{E}}{-}06} & { - 6.511{\text{E}}{-}06} \\ {3.213{\text{E}}{-}06} & { - 1.133{\text{E}}{-}06} & { - 6.805{\text{E}}{-}06} & { - 1.125{\text{E}}{-}06} & { - 9.485{\text{E}}{-}06} \\ { - 1.018{\text{E}}{-}05} & { - 5.774{\text{E}}{-}06} & { - 6.766{\text{E}}{-}07} & { - 5.058{\text{E}}{-}06} & { - 4.276{\text{E}}{-}07} \\ {1.133{\text{E}}{-}05} & { - 8.664{\text{E}}{-}06} & {3.435{\text{E}}{-}06} & {9.654{\text{E}}{-}07} & { - 1.671{\text{E}}{-}06} \\ \end{array} } \right. \hfill \\ \left. {\begin{array}{rrrrr} { - 7.043{\text{E}}{-}06} & { - 2.618{\text{E}}{-}07} & {3.213{\text{E}}{-}06} & { - 1.018{\text{E}}{-}05} & {1.133{\text{E}}{-}05} \\ { - 3.590{\text{E}}{-}06} & { - 3.061{\text{E}}{-}06} & { - 1.133{\text{E}}{-}06} & { - 5.774{\text{E}}{-}06} & { - 8.664{\text{E}}{-}06} \\ { - 5.465{\text{E}}{-}06} & { - 2.569{\text{E}}{-}06} & { - 6.805{\text{E}}{-}06} & { - 6.766{\text{E}}{-}07} & {3.435{\text{E}}{-}06} \\ { - 1.614{\text{E}}{-}05} & {5.718{\text{E}}{-}06} & { - 1.125{\text{E}}{-}06} & { - 5.058{\text{E}}{-}06} & {9.654{\text{E}}{-}07} \\ { - .314{\text{E}}{-}06} & { - 6.511{\text{E}}{-}06} & { - 9.485{\text{E}}{-}06} & { - 4.276{\text{E}}{-}07} & { - 1.671{\text{E}}{-}06} \\ {3.122{\text{E}}{-}05} & {5.442{\text{E}}{-}06} & { - 1.045{\text{E}}{-}05} & {2.752{\text{E}}{-}06} & { - 1.047{\text{E}}{-}06} \\ {5.442{\text{E}}{-}06} & {1.823{\text{E}}{-}05} & {9.436{\text{E}}{-}07} & { - 8.888{\text{E}}{-}06} & { - 9.043{\text{E}}{-}06} \\ { - 1.045{\text{E}}{-}05} & {9.436{\text{E}}{-}07} & {2.654{\text{E}}{-}05} & {1.213{\text{E}}{-}05} & { - 1.384{\text{E}}{-}05} \\ {2.752{\text{E}}{-}06} & { - 8.888{\text{E}}{-}06} & {1.213{\text{E}}{-}05} & {2.018{\text{E}}{-}05} & { - 4.054{\text{E}}{-}06} \\ { - 1.047{\text{E}}{-}06} & { - 9.043{\text{E}}{-}06} & { - 1.384{\text{E}}{-}05} & { - 4.054{\text{E}}{-}06} & {2.258{\text{E}}{-}05} \\ \end{array} } \right], \hfill \\ \end{aligned} $$
(A. 3)
$$ \begin{aligned} Cov\left\{ {\tilde{e}_{XY} ,\;\tilde{e}_{xy} } \right\} = \left[ {\begin{array}{rrrrr} { - 5.719{\text{E}}{-}06} & { - 9.516{\text{E}}{-}08} & {1.956{\text{E}}{-}06} & {1.142{\text{E}}{-}06} & {1.459{\text{E}}{-}06} \\ {1.542{\text{E}}{-}06} & { - 4.617{\text{E}}{-}06} & { - 1.775{\text{E}}{-}06} & {1.782{\text{E}}{-}06} & { - 1.164{\text{E}}{-}06} \\ {2.316{\text{E}}{-}06} & { - 1.126{\text{E}}{-}06} & { - 4.733{\text{E}}{-}06} & { - 1.095{\text{E}}{-}06} & {1.806{\text{E}}{-}06} \\ {4.929{\text{E}}{-}07} & {2.141{\text{E}}{-}06} & {4.525{\text{E}}{-}07} & { - 5.039{\text{E}}{-}06} & { - 7.172{\text{E}}{-}07} \\ {1.820{\text{E}}{-}06} & { - 7.995{\text{E}}{-}07} & {2.041{\text{E}}{-}06} & {7.664{\text{E}}{-}08} & { - 4.958{\text{E}}{-}06} \\ {1.116{\text{E}}{-}06} & {8.423{\text{E}}{-}07} & {7.664{\text{E}}{-}07} & {3.206{\text{E}}{-}06} & { - 7.501{\text{E}}{-}08} \\ { - 4.803{\text{E}}{-}08} & {6.302{\text{E}}{-}07} & {7.093{\text{E}}{-}07} & { - 1.078{\text{E}}{-}06} & {1.559{\text{E}}{-}06} \\ { - 6.329{\text{E}}{-}07} & {1.260{\text{E}}{-}07} & {1.245{\text{E}}{-}06} & {3.949{\text{E}}{-}07} & {1.644{\text{E}}{-}06} \\ {1.632{\text{E}}{-}06} & {1.390{\text{E}}{-}06} & {2.581{\text{E}}{-}08} & {9.542{\text{E}}{-}07} & {1.347{\text{E}}{-}07} \\ { - 2.518{\text{E}}{-}06} & {1.507{\text{E}}{-}06} & { - 6.890{\text{E}}{-}07} & { - 3.437{\text{E}}{-}07} & {3.117{\text{E}}{-}07} \\ \end{array} } \right. \hfill \\ \left. {\begin{array}{rrrrr} {1.481{\text{E}}{-}06} & {1.452{\text{E}} - 07} & { - 5.900{\text{E}} - 07} & {2.159{\text{E}}{-}06} & { - 1.937{\text{E}}{-}06} \\ {4.812{\text{E}}{-}07} & {5.873{\text{E}}{-}07} & {3.193{\text{E}} - 07} & {8.094{\text{E}} - 07} & {2.034{\text{E}}{-}06} \\ {1.560{\text{E}}{-}06} & {3.235{\text{E}}{-}07} & {1.358{\text{E}}{-}06} & {2.875{\text{E}}{-}07} & { - 6.979{\text{E}}{-}07} \\ {2.971{\text{E}}{-}06} & { - 1.191{\text{E}}{-}06} & {9.159{\text{E}}{-}09} & {9.632{\text{E}}{-}07} & { - 8.203{\text{E}}{-}08} \\ { - 1.801{\text{E}}{-}06} & {1.099{\text{E}}{-}06} & {2.167{\text{E}}{-}06} & { - 1.657{\text{E}}{-}09} & {3.572{\text{E}}{-}07} \\ { - 5.941{\text{E}}{-}06} & { - 1.259{\text{E}}{-}06} & {1.740{\text{E}}{-}06} & { - 5.486{\text{E}}{-}07} & {1.521{\text{E}}{-}07} \\ { - 7.366{\text{E}}{-}07} & { - 3.575{\text{E}}{-}06} & { - 1.001{\text{E}}{-}06} & {1.355{\text{E}}{-}06} & {2.185{\text{E}}{-}06} \\ {2.200{\text{E}}{-}06} & {3.781{\text{E}}{-}07} & { - 5.134{\text{E}}{-}06} & { - 2.634{\text{E}}{-}06} & {2.413{\text{E}}{-}06} \\ { - 5.032{\text{E}}{-}07} & {2.007{\text{E}}{-}06} & { - 1.934{\text{E}}{-}06} & { - 3.800{\text{E}}{-}06} & {9.283{\text{E}}{-}08} \\ {2.885{\text{E}}{-}07} & {1.485{\text{E}}{-}06} & {3.066{\text{E}}{-}06} & {1.410{\text{E}}{-}06} & { - 4.518{\text{E}}{-}06} \\ \end{array} } \right]. \hfill \\ \end{aligned} $$
(A. 4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neitzel, F., Schaffrin, B. Adjusting a 2D Helmert transformation within a Gauss–Helmert Model with a singular dispersion matrix where BQ is of smaller rank than B . Acta Geod Geophys 52, 479–496 (2017). https://doi.org/10.1007/s40328-016-0184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-016-0184-2

Keywords

Navigation