Skip to main content
Log in

Refined class number formulas for elliptic units

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

We generalize the notions of Kolyvagin and pre-Kolyvagin systems to prove “refined class number formulas” for quadratic extensions of a quadratic imaginary fields \(K\) of class number one. Our main result generalises the results and conjectures of Darmon (Canad. J. Math. 47:302–317, 1995), by replacing circular units in abelian extensions of \(\mathbb {Q}\) by elliptic units in abelian extensions of K.

Résumé

Nous généralisons ici les notions de systèmes et de pré-systèmes de Kolyvagin pour prouver des “formules de nombres de classes raffinées” pour les extensions quadratiques de corps quadratiques imaginaires \(K\) de groupe de classes trivial. Notre résultat principal généralise les résultats et les conjectures de Darmon (Canad. J. Math. 47:302–317, 1995) en remplaçant les unités circulaires dans les extensions abéliennes de \(\mathbb {Q}\) par les unités elliptiques dans les extensions abéliennes de \(K\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We use the inverse of the local Artin symbol and not the Artin symbol as in Definition 3.5 of [4]. The reason follows from the explicit computation of the finite singular morphism in Proposition 7.1. For the same reason, it should be the inverse of the local Artin symbol in Definition 3.5 of [4].

  2. This notation may seem unusual but in our spirit we consider elements of the residue fields as elements of the Galois group of ray class field extensions.

  3. The module \(H^1_{\mathcal {F}(\mathfrak {m^+})}(K,T/I_\mathfrak {m^+} T)\) is a submodule of \(H^1(K,T/I_\mathfrak {m^+} T)\) defined by local conditions. See [3] Definition 2.1.1.

  4. In [3], a Kolyvagin system takes values at ideals in \(\mathcal {N}(\mathcal {P})\). Here, we extend it “trivially” to all ideals of \(K\) by property \((ii)\).

  5. There is a small erratum concerning the use of theses hypotheses in [3] which is corrected in appendix .

  6. The change (H5) comparing to [3], 3.5, p.27 is harmless, since for \(\mathfrak {m}\) divided by the elements of \(\lbrace \mathfrak {l} | J_\mathfrak {l} = R \rbrace \), we have \(T/I_\mathfrak {m^+} T=0\) and all the additional modules that we consider are trivial.

  7. As mentioned in Sect. 2, the formula is not the same as in [4]. The Definition 5.1 in [4] should be corrected to agree with Definition 1.2.2 of [3].

References

  1. Darmon, H.: Thaine’s method for circular units and a conjecture of Gross. Canad. J. Math. 47, 302–317 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Flach, M.: Iwasawa theory and motivic L-functions. Pure Appl. Math. Q. 5 (1, Sp.), 255–294 (2009)

  3. Mazur, B., Rubin, K.: Kolyvagin systems. Mem. Am. Math. Soc. 168(799), viii+96 (2004)

  4. Mazur, B., Rubin, K.: Refined class number formulas and Kolyvagin systems. Compos. Math. 147, 56–74 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mazur, B., Tate, J.: Refined conjectures of the Birch and Swinnerton-Dyer type. Duke Math. J. 54(2), 711 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rubin, K.: Euler system. Annals of mathematics studies, vol. 147, pp. 227+xi. Princeton University Press, Princeton (2000)

  7. Rubin, K.: Elliptic Curves with Complex Multiplication and the Conjecture of Birch and Swinnerton-Dyer in Arithmetic Theory of Elliptic Curves. Lectures Notes in Mathematics 1716, 167–234 (1997)

  8. Serre, J.-P.: Corps locaux. 4e édition Hermann, Paris (1968)

  9. Siegel, C.L.: On advanced analytic number theory. Tata Institute of Fundamental Research, Mumbai, India (1965)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gomez.

Appendices

Appendix A: About the augmentation quotient

Let \(\mathcal {I}_\mathfrak {m}^{new}\) be the subgroup generated by the elements of the form \(\prod _{\mathfrak {l}|\mathfrak {m}^+}(g_\mathfrak {l}-1)\) where \(g_\mathfrak {l} \in \Gamma _\mathfrak {l}\). Denote also \(P_\mathfrak {n}\), the composition \(\mathbb {Z}[\Gamma _\mathfrak {m}]\rightarrow \mathbb {Z} [\Gamma _\mathfrak {n}]\rightarrow \mathbb {Z}[\Gamma _\mathfrak {m}]\). To simplify the notation denote \(r:=r(\mathfrak {m}^+)\). We have the following statement.

Proposition 10.4

For any abelian group \(A\), if \(x\in A \otimes I^r/I^{r+1} \) is such that \(P_{\mathfrak {m}/\mathfrak {l}}(x) = 0\) for all \(\mathfrak {l}|\mathfrak {m}^+\), then \(x\in A\otimes \mathcal {I}_\mathfrak {m}^{new}\).

Proof

As a first remark, since \(P_{\mathfrak {m}/\mathfrak {l}_1}\circ P_{\mathfrak {m}/\mathfrak {l}_2}=P_{\mathfrak {m}/(\mathfrak {l}_1 \mathfrak {l}_2)}\), we have

$$\begin{aligned} P_{\mathfrak {m}^-\mathfrak {d}}(x) = 0 \forall \mathfrak {d}|\mathfrak {m}^+ . \end{aligned}$$

For any \(\mathfrak {l}|\mathfrak {m}\) choose a generator \(\gamma _\mathfrak {l}\) of \(\Gamma _{\mathfrak {l}}\). Then the elements of the form \(\prod (\gamma _\mathfrak {l}-1)\) generate \(I^r/I^{r+1} \). Indeed for any \(\prod _j (g_j-1) \in I^r/I^{r+1}\), we have

$$\begin{aligned} \prod _j (g_j-1)&= \prod _j \left( \prod _\mathfrak {l} \gamma _\mathfrak {l}^{n_{\mathfrak {l},j}} -1\right) \\&= \prod _j \left( \sum _\mathfrak {l} n_{\mathfrak {l},j}(\gamma _\mathfrak {l} -1\right) \quad \text { since } g_1g_2-1= g_1-1 + g_2-1 \in I_\mathfrak {m}/I_\mathfrak {m}^2\\&=\sum _{I} n_I \prod _{\mathfrak {l}\in I} (\gamma _\mathfrak {l} -1). \end{aligned}$$

Using the previous fact and using the notations

$$\begin{aligned} \mathfrak {m}^+=\prod _{i=1}^r \mathfrak {l}_i\quad \text{ and } \quad \mathcal {J}^-_r:=\left\{ \lbrace \mathfrak {l}_1,\dots ,\mathfrak {l}_r \rbrace \text { such that } \forall i, \mathfrak {l}_i | \mathfrak {m}^- \right\} , \end{aligned}$$

any element \(x\in A \otimes I^{r}/I^{r+1}\) can be written as

$$\begin{aligned} x&= x_{new} \otimes \prod _{i=1}^r(\gamma _{\mathfrak {l}_i}-1) + \sum _{J\in \mathcal {J}^-_r} x_J \otimes \prod _{\mathfrak {l} \in J} (\gamma _{\mathfrak {l}}-1)\\&\quad + \sum _{a_1=1}^r\left( \sum _{J\in \mathcal {J}_{r-a_1}} x_{J,1}\otimes (\gamma _{\mathfrak {l}_1}-1)^{a_1} \prod _{\mathfrak {l} \in J} (\gamma _{\mathfrak {l}}-1)\right) +\cdots \\&\quad \cdots +\sum _{a_r=1}^r\left( \sum _{J\in \mathcal {J}_{r-a_r}} x_{J,r}\otimes (\gamma _{\mathfrak {l}_r}-1)^{a_r} \prod _{\mathfrak {l} \in J} (\gamma _{\mathfrak {l}}-1)\right) \\&\quad +\sum _{a_1+a_2=2,a_1,a_2\ne 0}^r \left( \sum _{J\in \mathcal {J}_{r-a_1-a_2}} x_{J,1,2}\otimes (\gamma _{\mathfrak {l}_1}-1)^{a_1}(\gamma _{\mathfrak {l}_2}-1)^{a_2} \prod _{\mathfrak {l} \in J}(\gamma _{\mathfrak {l}}-1)\right) +\cdots \\&\qquad \qquad \qquad \qquad \qquad \quad \vdots \qquad \qquad \qquad \qquad \qquad \vdots \\&\quad + \sum _{\mathfrak {l}|\mathfrak {m}^-} x_{\mathfrak {l},\mathfrak {l}_r} \otimes (\gamma _{\mathfrak {l}_1}-1)\cdots (\gamma _{\mathfrak {l}_{r-1}}-1) (\gamma _\mathfrak {l}-1)+\cdots \\&\quad \dots +\sum _{\mathfrak {l}|\mathfrak {m}^-} x_{\mathfrak {l},\mathfrak {l}_1}\otimes (\gamma _{\mathfrak {l}_2}-1)\cdots (\gamma _{\mathfrak {l}_r}-1)(\gamma _\mathfrak {l}-1). \end{aligned}$$

To finish the proof, we have to show that \(x = x_{new} \otimes \prod _{\mathfrak {l}|\mathfrak {m}^+}(\gamma _\mathfrak {l}-1)\) and we prove it by induction. By applying \(P_{\mathfrak {m}^-}\), we see that

$$\begin{aligned} \sum _{J\in \mathcal {J}^-_r} x_J \otimes \prod _{\mathfrak {l} \in J} (\gamma _{\mathfrak {l}}-1)=0 \end{aligned}$$

and the second row is zero. Then applying \(P_{\mathfrak {m}^-\mathfrak {l}_i}\), we have

$$\begin{aligned} \sum _{a_i=1}^r\left( \sum _{J\in \mathcal {J}_{r-a_i}} x_{J,i}\otimes (\gamma _{\mathfrak {l}_i}-1)^{a_i} \prod _{\mathfrak {l} \in J} (\gamma _{\mathfrak {l}}-1)\right) =0. \end{aligned}$$

Applying it for all \(i\) we see that the third row is zero. Then, by induction on the rows, we apply \( P_{\mathfrak {m}^-\mathfrak {l}_{i_1}\cdots \mathfrak {l}_{i_n}} \) for all \(n-\)uple \((i_1,...i_n)\) and we see that the \((n+2)\)-th row is zero. \(\square \)

Appendix B: On a technical hypothesis in [3]

We finally end this paper with a small erratum in [3]. Stated as they are, Lemma 2.1.4 and Lemma 3.5.2 are wrong and we state here a “good version” of Lemma 3.5.2. It does not change anything in [3], since Lemma 3.5.2 is only used in a special case where it is actually true. We suggest here a new formulation of this lemma with its proof. We follow the notation of [3].

Lemma 10.5

Suppose that (H0), (H1) and (H3) hold. Then for any ideal \(J\) of \(R\) and any submodule \(S\) of \(T\) and \(S'\) of \(T^*\), we have

$$\begin{aligned} (S/J T)^{G_\mathbb {Q}}=(S'/J T^*)^{G_\mathbb {Q}}=0. \end{aligned}$$

Proof

By (H1), if \((T/\mathfrak {m} T)^{G_\mathbb {Q}} \ne 0\), then \(G_\mathbb {Q}\) acts trivially on \(T\). In this case we can find a nonzero element in \(H^1(\mathbb {Q}(T,\mu _{p^\infty })/\mathbb {Q},T/\mathfrak {m} T)\) since \(Gal(\mathbb {Q}(T,\mu _{p^\infty })/\mathbb {Q})\) has a quotient isomorphic to \(Z/pZ\) and \(T/\mathfrak {m} T \simeq Z/pZ\). By (H3), this shows \((T/\mathfrak {m} T)^{G_\mathbb {Q}} = 0\).

For any submodule \(S\) of \(T\), and any ideal \(J\subseteq R\), \((S/J T)^{G_\mathbb {Q}}\) injects in \((T/J T)^{G_\mathbb {Q}}\), so we have to show that \((T/J T)^{G_\mathbb {Q}}=0\). Suppose \(\mathfrak {m}^{i+1} \subsetneq J \subseteq \mathfrak {m}^{i} \) and let \(\overline{x} \in (T/J T)^{G_\mathbb {Q}}\) with antecedent \(x\) in \(T\). By definition, \(x\in (T/\mathfrak {m} T)^{G_\mathbb {Q}}=0\) and \(x \in \mathfrak {m}T\). Write \(x=a_1 x_1\). We have \(a_1 x_1 \in \in (T/J T)^{G_\mathbb {Q}}\). If \(a_1 \in J\), \(\overline{x}=0\) and we are done. If not, by (H0), \(x_1 \in \mathfrak {m}T\) and we can write \(x_1=a_2 x_2\) with \(a_2 \in \mathfrak {m}\). By induction, \(x=a_1\cdots a_{i+1} x_{i+1}\) with \(a_k \in \mathfrak {m}\) and \(\overline{x}=0\). The proof for \(T^*\) is similar. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, C. Refined class number formulas for elliptic units. Ann. Math. Québec 39, 1–24 (2015). https://doi.org/10.1007/s40316-014-0023-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-014-0023-1

Keywords

Mathematics Subject Classification

Navigation