Skip to main content
Log in

One helpful property of functions generating Pólya frequency sequences

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

In this work we study solutions of the equation \(z^pR(z^k)=\alpha \) with non-zero complex \(\alpha \), integer pk and R(z) generating a (possibly doubly infinite) totally positive sequence. It is shown that the zeros of \(z^pR(z^k)-\alpha \) are simple (or at most double in the case \(\mathrm{Im}\,\,\alpha ^k=0\)) and split evenly among the sectors \(\{\frac{j}{k} \pi \leqslant \mathrm{Arg}\,\, z\leqslant \frac{j+1}{k} \pi \}\), \(j=0,\ldots , 2k-1\). Our approach rests on the fact that \(z(\ln z^{p/k}R(z) )'\) is an \(\mathcal {R}\)-function (i.e. maps the upper half of the complex plane into itself). This result guarantees the same localization to zeros of entire functions

$$\begin{aligned} f(z^k)+z^p g(z^k) \quad \text {and}\quad g(z^k)+z^{p}f(z^k) \end{aligned}$$

provided that f(z) and \(g(-z)\) have genus 0 and only negative zeros. As an application, we deduce that functions of the form \(\sum _{n=0}^\infty (\pm i)^{n(n-1)/2}a_n z^{n}\) have simple zeros distinct in absolute value under a certain condition on the coefficients \(a_n\geqslant 0\). This includes the “disturbed exponential” function corresponding to \(a_n= q^{n(n-1)/2}/n!\) when \(0<q\leqslant 1\), as well as the partial theta function corresponding to \(a_n= q^{n(n-1)/2}\) when \(0<q\leqslant q_*\approx 0.7457224107\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Functions of this form are the kth root transforms of \(z^pR^k(z)\). In the particular case when R(z) and \(R'(z)\) are holomorphic and non-zero at \(z=0\), the function \(zR^k(z)\) is univalent in some disk centred at the origin. Then, \(zR(z^{k})\) will be a univalent function with k-fold symmetry in this disk in the sense that the image of \(zR(z^{k})\) will be k-fold rotationally symmetric (see e.g. [8, Sect. 2.1] for the details). The term “functions with k-fold symmetry” could be good under the narrower conditions imposed; however, we study a more general case assuming no such regularity at the origin and allowing any integer p satisfying \(\gcd (|p|,k)=1\).

  2. As soon as the \(\alpha \)-set of the function \(z^pR(z^k)\) actually contains the point \(z_{i+2k}\): Theorem 20 asserts nothing about existence of \(\alpha \)-points, nor does Theorem 22.

  3. The definition of genus can be found in e.g. [7, p. 92] or [19, p. 9]. These books also introduce further basic notions of the theory of entire functions.

  4. The polynomial is called (Hurwitz) stable if all of its roots have negative real parts.

  5. The zeros of two functions are called interlacing if between each two consecutive zeros of the first function there is exactly one zero of the second function and vice versa. The Hermite-Biehler theorem assumes the interlacing property to be strict, which means that the functions have no common zeros.

  6. Many similar facts are well known. For example, considering functions \(\Phi (\zeta )\mathrel {\mathop :}=\phi (e^{-\zeta })\) gives the problem from [31] but in a strip. However, we place this lemma here since we need the relation between \(|z_1|\) and \(|z_2|\) satisfying (4) rather than the univalence itself.

  7. Here \(\mathrm{dist}(0,\gamma _i):= \inf _{z\in \gamma _i}|z|\) is the distance between the origin and the component \(\gamma _i\), \(i=1,2,\ldots \).

  8. In fact we have more: \(\partial \mathrm{Im}\psi (z) / \partial \nu =0\) implies that the gradient of \(\mathrm{Im}\psi \) on \(\gamma _i\) is tangential to \(\gamma _i\).

  9. This limit exists since the function \(\phi \) increases in \({\mathfrak {I}}\).

  10. This fact follows from the integral representation (2). It can be also deduced from the expression (7) when \(\mathcal {R}\)-functions have the form considered in this lemma.

  11. On the one hand, the condition that \(\overline{\alpha }=\alpha e_{-2p{\widetilde{s}}}\) for some integer \({\widetilde{s}}=0,\ldots ,k-1\) coincides with \(\overline{\alpha e_{-p{\widetilde{s}}}}=\alpha e_{-p{\widetilde{s}}}\) and therefore to \(\mathrm{Im}\alpha e_{-p{\widetilde{s}}}=0\). On the other hand, changing the order gives \(\overline{\alpha }\in \big \{\alpha e_{-2pm}\big \}_{m=0}^{k-1} =\big \{\alpha {}e_{2p(k-m)}\big \}_{m=0}^{k-1} =\big \{\alpha e_{2pm}\big \}_{m=0}^{k-1}\), which is \(\overline{\alpha }=\alpha e_{2ps}\) for some integer \(s=0,\ldots ,k-1\); the last expression can be written as \(\overline{\alpha e_{ps}}=\alpha e_{ps}\), or equivalently \(\mathrm{Im}\alpha e_{ps}=0\).

  12. The right-hand side follows from \(\alpha e_{2q+2ps} =\alpha e_{ps}\cdot e_{2q+ps} =\overline{\alpha e_{ps}}\cdot \overline{e_{-2q-ps}} =\overline{\alpha e_{-2q}} =\overline{\alpha }e_{2q}\).

  13. If \(R(w)\in \Omega \) for some \(w\in \mathbb {C}_{+}\) satisfying \(|w|<|w_0|\), then \(z_0\) cannot be the \(\alpha \)-point of F(z) minimal in absolute value; see the proof of Theorem 23 for the details.

  14. Recall that \(\left\lceil \frac{p}{2}\right\rceil \) stands for the minimal integer greater than or equal to \(\frac{p}{2}\). Here \(\left| \left\lceil \frac{p}{2}\right\rceil \right| \leqslant \left| \frac{p}{2}\right| \) since \(p<0\).

  15. The definition and properties of multiplier sequences can be found in e.g. [23], [22, Chapter II] and [19, Chapter VIII, Sect. 3]. The fact that \(\big (q^{n(n-1)/2}\big )_{n=0}^{\infty }\) is a multiplier sequence (of the first kind) for \(0<q\leqslant 1\) was first shown by Laguerre [17, p. 35]. The more modern proof follows from Satz 10.1 of [22, p. 42] applied to the function \(\Phi (z)\mathrel {\mathop :}=\exp \big (\frac{1}{2}z(z-1)\cdot \ln q\big )\).

References

  1. Aissen, M., Edrei, A., Schoenberg, I.J., Whitney, A.: On the generating functions of totally positive sequences. Proc. Natl. Acad. Sci. USA 37, 303–307 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ålander, M.: Sur le déplacement des zéros des fonctions entières par leur dérivation (French). Thèse. Almqvist Wiksell, Uppsala (1914)

    Google Scholar 

  3. Andrews, G.E., Berndt, B.C.: Ramanujan’s lost notebook. Part II. Springer, New York (2009)

    MATH  Google Scholar 

  4. Barkovsky, Y., Tyaglov, M.: Hurwitz rational functions. Linear Algebra Appl. 435(8), 1845–1856 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biehler, C.: Sur une classe d’équations algébriques dont toutes les racines sont réelles (French). Nouv. Ann. 19(2), 149–153 (1880)

  6. Chebotarev, N.G., Tschebotareff, N.: Über die Realität von Nullstellen ganzer transzendenter Funktionen (German). Math. Ann. 99, 660–686 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chebotarev, N.G., Meĭman, N.N.: The Routh-Hurwitz problem for polynomials and entire functions (Russian). Trudy Mat. Inst. Steklova Acad. Sci. 26, 3–331 (1949)

  8. Duren, P.: Univalent functions. Springer, New York, Berlin, Heidelberg, Tokyo (1983)

    MATH  Google Scholar 

  9. Dyachenko, A.: On certain class of entire functions and a conjecture by Alan Sokal. http://arxiv.org/pdf/1309.7551v1.pdf (2013) (preprint)

  10. Edrei, A.: On the generating function of a doubly infinite, totally positive sequence. Trans. Am. Math. Soc. 74(3), 367–383 (1953)

    MathSciNet  MATH  Google Scholar 

  11. Eremenko, A., Ostrovsky, I.: On the pits effect of Littlewood and Offord. Bull. Lond. Math. Soc. 39(6), 929–939 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gantmacher, F.R.: The theory of matrices, vol. 2. Chelsea Publishing Co., New York (1959)

    MATH  Google Scholar 

  13. Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers, 4th edn. Clarendon Press, Oxford (1975)

    MATH  Google Scholar 

  14. Kostov, V.P.: On the zeros of a partial theta function. Bull. Sci. math. 137, 1018–1030 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kostov, V.P., Shapiro, B.: Hardy-Petrovitch-Hutchinson’s problem and partial theta function. Duke Math. J. 162(5), 825–861 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kac, I.S., Kreĭn, M.G.: R-functions—analytic functions mapping the upper halfplane into itself. Am. Math. Soc. Transl. 103(2), 1–18 (1974) (Supplement I to the Russian edition of Atkinson, F.V.: Discrete and continuous boundary problems. Mir, Moscow, 629–647 1968)

  17. Laguerre, E.N.: Œuvres. Tome I. Gauthier-Villars et Fils, Paris (1898)

  18. Langley, J.K.: A certain functional-differential equation. J. Math. Anal. Appl. 244(2), 564–567 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Levin, B.Ja.: Distribution of zeros of entire functions, revised edition. AMS, Providence (1980)

  20. Liu, Y.-K.: On some conjectures by Morris, et al.: about zeros of an entire function. J. Math. Anal. Appl. 226(1), 1–5 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Morris, G., Feldstein, A., Bowen, E.: The Phragmen-Lindelöf principle and a class of functional differential equations. In: Weiss, L. (ed.) Ordinary differ. Equat. (Proc. NRL-MRC Conf., Washington D.C. 1971), pp. 513–540. Academic Press, New York (1972)

  22. Obreschkoff, N.: Verteilung und Berechnung der Nullstellen reeller Polynome (German). VEB Deutscher Verlag der Wissenschaften, Berlin (1963)

    MATH  Google Scholar 

  23. Pólya, G., Schur, J.: Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen (German). J. Reine Angew. Math. 144, 89–113 (1914)

    MathSciNet  MATH  Google Scholar 

  24. Postnikov, M.M.: Stable polynomials. Nauka, Moscow (1981)

  25. Sokal, A.D.: Some wonderful conjectures (but almost no theorems) at the boundary between analysis, combinatorics and probability. The entire function \(F (x, y) = \sum _{n=0}^\infty x^n y^{n(n-1)/2} /n!\), the polynomials \({P_N}(x, w) = \sum \nolimits _{n = 0}^N {\left( {\begin{matrix} N \ n \ \end{matrix}} \right){x^n}{w^{n(N - n)}}}\), and the generating polynomials of connected graphs. Lecture notes. http://ipht.cea.fr/statcomb2009/misc/Sokal_20091109.pdf, http://www.maths.qmul.ac.uk/~pjc/csgnotes/sokal/ (2011). Accessed 25 June 2015

  26. Sokal, A.D.: The leading root of the partial theta function. Adv. Math. 229(5), 2603–2621 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tyaglov, M.: Generalized Hurwitz polynomials. http://arxiv.org/pdf/1005.3032v1.pdf (2010) (preprint)

  28. Valiron, G.: Sur une équation fonctionnelle et certaines suites de facteurs (French). J. Math. Pures Appl., IX. Sér. 17, 405–423 (1938)

  29. Warnaar, S.O.: Partial theta functions. I. Beyond the lost notebook. Proc. Lond. Math. Soc. 87(2), 363–395 (2003)

  30. Wigner, E.P.: On a class of analytic functions from the quantum theory of collisions. Ann. Math. 2(53), 36–67 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wolff, J.: L’intégrale d’une fonction holomorphe et à partie réelle positive dans un demi-plan est univalente. CR Acad. Sci. Paris 198, 1209–1210 (1934)

Download references

Acknowledgments

The author is grateful to the people who gave helpful comments concerning this study, especially the members (former and current) of his working group at the TU-Berlin. The anonymous referees suggested significant improvements to the paper, for which the author is grateful. I also thank the colleagues from Potsdam (Germany) and Ufa (Russian Federation) for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Dyachenko.

Additional information

Communicated by George Csordas.

This work was financially supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant Agreement No. 259173.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyachenko, A. One helpful property of functions generating Pólya frequency sequences. Comput. Methods Funct. Theory 16, 529–566 (2016). https://doi.org/10.1007/s40315-016-0160-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-016-0160-4

Keywords

Mathematics Subject Classification

Navigation