Skip to main content
Log in

Sobolev Homeomorphisms and Brennan’s Conjecture

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Let \(\Omega \subset {\mathbb {R}}^n\) be a domain that supports the \(p\)-Poincaré inequality. Given a homeomorphism \(\varphi \in L^1_p(\Omega )\), for \(p>n\) we show that the domain \(\varphi (\Omega )\) has finite geodesic diameter. This result has a direct application to Brennan’s conjecture and quasiconformal homeomorphisms. The Inverse Brennan’s conjecture states that for any simply connected plane domain \(\Omega ' \subset {\mathbb {C}}\) with non-empty boundary and for any conformal homeomorphism \(\varphi \) from the unit disc \({\mathbb {D}}\) onto \(\Omega '\) the complex derivative \(\varphi '\) is integrable in the degree \(s, -2<s<2/3\). If \(\Omega '\) is bounded then \(-2<s\le 2\). We prove that integrability in the degree \(s> 2\) is not possible for domains \(\Omega '\) with infinite geodesic diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astala, K., Koskela, P.: Quasiconformal mappings and global integrability of the derivative. J. Anal. Math. 57, 203–220 (1991)

    MathSciNet  MATH  Google Scholar 

  2. Gehring, F.W.: The \(L^{p}\)-integrability of the partial derivatives of quasiconformal mapping Bull. Am. Math. Soc. 79, 465–466 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertilsson, D.: On Brennan’s Conjecture in conformal mapping. Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden (1999)

  4. Brennan, J.: The integrability of the derivative in conformal mapping. J. Lond. Math. Soc. 18, 261–272 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gol’dshtein, V., Gurov, L.: Applications of change of variable operators for exact embedding theorems. Integral Equ. Oper. Theory 19, 1–24 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gol’dshtein, V.M., Reshetnyak, YuG: Quasiconformal Mappings and Sobolev spaces. Kluwer Academic Publishers, Dordrecht (1990)

    Book  MATH  Google Scholar 

  7. Gol’dshtein, V., Ukhlov, A.: Weighted Sobolev spaces and embedding theorems. Trans. Am. Math. Soc. 361, 3829–3850 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gol’dshtein, V., Ukhlov, A.: Brennan’s conjecture for composition operators on Sobolev spaces. Eurasian Math. J. 3, 35–43 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Gol’dshtein, V., Ukhlov, A.: Conformal weights and Sobolev embeddings. J. Math. Sci. (N. Y.) 193, 202–210 (2014)

    Google Scholar 

  10. Gol’dshtein, V., Ukhlov, A.: Brennan’s Conjecture and universal Sobolev inequalities. Bull. Sci. Math. 138, 253–269 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gol’dshtein, V., Ukhlov, A.: Sobolev homeomorphisms and composition operators, Sobolev spaces in mathematics. Int. Math. Ser (N. Y.) 11, 207–220 (2010)

    Article  MathSciNet  Google Scholar 

  12. Gol’dshtein, V., Ukhlov, A.: About homeomorphisms that induce composition operators on Sobolev spaces. Complex Var. Elliptic Equ. 55, 833–845 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hajlasz, P., Kinnunen, J.: Hölder quasicontinuity of Sobolev functions on metric spaces. Rev. Mat. Iberoam. 14, 601–622 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Martio, O., Väisälä, J.: Global \(L^p\)-integrability of the derivative of a quasiconformal mapping. Complex Var. 9, 309–319 (1988)

    Article  MATH  Google Scholar 

  15. Ukhlov, A.: On mappings, which induced embeddings of Sobolev spaces. Sib. Math. J. 34, 185–192 (1993)

    MathSciNet  Google Scholar 

  16. Vodop’yanov, S.K., Ukhlov, A.D.: Superposition operators in Sobolev spaces. Russ. Math. (Iz. VUZ) 46(4), 11–33 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Ziemer, W.P.: Weakly Differentiable Functions. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Gol’dshtein.

Additional information

Communicated by Matti Vuorinen.

Dedicated to the memory of F. W. Gehring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gol’dshtein, V., Ukhlov, A. Sobolev Homeomorphisms and Brennan’s Conjecture. Comput. Methods Funct. Theory 14, 247–256 (2014). https://doi.org/10.1007/s40315-014-0065-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-014-0065-z

Keywords

Mathematics Subject Classification (2010)

Navigation