Skip to main content
Log in

Spatially dependent regularization parameter selection for total generalized variation-based image denoising

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We propose a novel image denoising model based on the total generalized variation (TGV) regularization. In the model, a spatially dependent regularization parameter is utilized to adaptively fit the local image features, resulting in further exploitation of the denoising potential of the TGV regularization. The proposed model is formulated under a joint optimization framework, by which the estimations of the restored image and the regularization parameter are achieved simultaneously. Furthermore, the model is general purpose that can handle various types of noise occurring in image processing. An alternating minimization-based numerical scheme is especially developed, which leads to an efficient algorithmic solution to the nonconvex optimization problem. Numerical experiments are reported to illustrate the effectiveness of our model in terms of both peak signal-to-noise ratio and visual perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. A function \(f:\mathbb {R}^n\rightarrow \mathbb {R}\) is called quasiconcave if its domain and all its superlevel set \(\{x|f(x)\ge \alpha \}\) are convex; see Boyd and Vandenberghe (2004) for more details.

  2. http://www.uni-graz.at/imawww/ifb/sa-tv/index.html.

References

  • Almansa A, Ballester C, Caselles V, Haro G (2008) A TV based restoration model with local constraints. J Sci Comput 34(3):209–236

    Article  MathSciNet  MATH  Google Scholar 

  • Andreu F, Caselles V, Díaz JI, Mazón JM (2002) Qualitative properties of the total variation flow. J Funct Anal 188(2):516–547

    Article  MathSciNet  MATH  Google Scholar 

  • Aubert G, Aujol JF (2008) A variational approach to remove multiplicative noise. SIAM J Appl Math 68(4):925–946

    Article  MathSciNet  MATH  Google Scholar 

  • Bertalmio M, Caselles V, Rougé B, Solé A (2003) TV based image restoration with local constraints. J Sci Comput 19:95–122

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsekas DP, Nedić A, Ozdaglar AE (2003) Convex analysis and optimization. Athena Scientific, Belmont

    MATH  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Bredies K, Holler M (2014) Regularization of linear inverse problems with total generalized variation. J Inverse Ill-posed Probl 22(6):871–913

    Article  MathSciNet  MATH  Google Scholar 

  • Bredies K, Kunisch K, Pock T (2010) Total generalized variation. SIAM J Imaging Sci 3(3):492–526

    Article  MathSciNet  MATH  Google Scholar 

  • Bredies K, Dong Y, Hintermüller M (2013) Spatially dependent regularization parameter selection in total generalized variation models for image restoration. Int J Comput Math 90(1):109–123

    Article  MathSciNet  MATH  Google Scholar 

  • Cai JF, Chan RH, Shen Z (2008) A framelet-based image inpainting algorithm. Appl Comput Harmon Anal 24:131–149

    Article  MathSciNet  MATH  Google Scholar 

  • Cai JF, Osher S, Shen Z (2009) Split Bregman methods and frame based image restoration. Multiscale Model Simul 8(2):337–369

    Article  MathSciNet  MATH  Google Scholar 

  • Chambolle A (2004) An algorithm for total variation minimization and applications. J Math Imaging Vis 20:89–97

    Article  MathSciNet  MATH  Google Scholar 

  • Chambolle A, Pock T (2011) A first-order primal-dual algorithm for convex problems with applications to imaging. J Math Imaging Vis 40:120–145

    Article  MathSciNet  MATH  Google Scholar 

  • Chan T, Marquina A, Mulet P (2000) High-order total variation-based image restoration. SIAM J Sci Comput 22(2):503–516

    Article  MathSciNet  MATH  Google Scholar 

  • Chen DQ, Cheng LZ (2012a) Spatially adapted regularization parameter selection based on the local discrepancy function for poissonian image deblurring. Inverse Probl 28(1):1–24

    Article  MathSciNet  MATH  Google Scholar 

  • Chen DQ, Cheng LZ (2012b) Spatially adapted total variation model to remove multiplicative noise. IEEE Trans Image Process 21(4):1650–1662

    Article  MathSciNet  MATH  Google Scholar 

  • Dong YQ, Hintermüller M, Rincon-Camacho MM (2011) Automated regularization parameter selection in multi-scale total variation models for image restoration. J Math Imaging Vis 40(1):82–104

    Article  MathSciNet  MATH  Google Scholar 

  • Eckstein J, Bertsekas DP (1992) On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math Program 55:293–318

    Article  MathSciNet  MATH  Google Scholar 

  • Gabay D, Mercier B (1976) A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Comp Math Appl 2(1):17–40

    Article  MATH  Google Scholar 

  • Gilboa G, Sochen N, Zeevi YY (2006) Variational denoising of partly textured images by spatially varying constraints. IEEE Trans Image Process 15(8):2281–2289

    Article  Google Scholar 

  • Glowinski R, Marrocco A (1975) Sur lapproximation par elements finis dordre un, et la resolution par penalisation-dualite dune classe de problemes de Dirichlet onlineaires. Rev Francaise dAut Inf Rech Oper 9(2):41–76

    Google Scholar 

  • Guo W, Qin J, Yin W (2014) A new detail-preserving regularization scheme. SIAM J Imag Sci 7(2):1309–1334

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen PC, Nagy JG, O’Leary DP (2006) Deblurring images: matrices, spectra, and filtering. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • He B, Yuan X (2012) On the \(o(1/n)\) convergence rate of the Douglas–Rachford alternating direction method. SIAM J Numer Anal 50(2):700–709

    Article  MathSciNet  MATH  Google Scholar 

  • Knoll F, Bredies K, Pock T, Stollberger R (2011) Second order total generalized variation (TGV) for MRI. Magn Reson Med 65(2):480–491

    Article  Google Scholar 

  • Li F, Shen C, Fan J, Shen C (2007) Image restoration combining a total variational filter and a fourth-order filter. J Vis Commun Image Represent 18:322–330

    Article  Google Scholar 

  • Liu G, Huang TZ, Liu J (2014) High-order TVL1-based images restoration and spatially adapted regularization parameter selection. Comput Math Appl 67(10):2015–2026

    Article  MathSciNet  MATH  Google Scholar 

  • Liu J, Huang TZ, Xu Z, Lv XG (2013) High-order total variation-based multiplicative noise removal with spatially adapted parameter selection. J Opt Soc Am A 30(10):1956–1966

    Article  Google Scholar 

  • Liu J, Huang TZ, Selesnick IW, Lv XG, Chen PY (2015) Image restoration using total variation with overlapping group sparsity. Inf Sci 295:232–246

    Article  MathSciNet  MATH  Google Scholar 

  • Lysaker M, Lundervold A, Tai XC (2003) Noise removal using fourth-order partial differential equations with applications to medical magnetic resonance images in space and time. IEEE Trans Image Process 12(12):1579–1590

    Article  MATH  Google Scholar 

  • Ma TH, Huang TZ, Zhao XL (2013) New regularization models for image denoising with a spatially dependent regularization parameter. Abst Appl Anal 2013(Article ID 729151):15. doi: 10.1155/2013/729151

  • Montefusco LB, Lazzaro D (2012) An iterative \(l_1\)-based image restoration algorithm with an adaptive parameter estimation. IEEE Trans Image Process 21(4):1676–1686

    Article  MathSciNet  MATH  Google Scholar 

  • Ng MK, Weiss P, Yuan X (2010) Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods. SIAM J Sci Comput 32(5):2710–2736

    Article  MathSciNet  MATH  Google Scholar 

  • Pižurica A, Philips W, Lemahieu I, Acheroy M (2002) A joint inter- and intrascale statistical model for bayesian wavelet based image denoising. IEEE Trans Image Process 11(5):545–557

    Article  Google Scholar 

  • Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D 60(1):259–268

    Article  MathSciNet  MATH  Google Scholar 

  • Şendur L, Selesnick IW (2002) Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans Signal Process 50(11):2744–2756

    Article  Google Scholar 

  • Shi J, Osher S (2008) A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM J Imag Sci 1(3):294–321

    Article  MathSciNet  MATH  Google Scholar 

  • Steidl G, Teuber T (2010) Removing multiplicative noise by Douglas–Rachford splitting. J Math Imag Vis 36(2):168–184

    Article  MathSciNet  MATH  Google Scholar 

  • Valkonen T, Bredies K, Knoll F (2013) Total generalized variation in diffusion tensor imaging. SIAM J Imag Sci 6(1):487–525

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Yang J, Yin W, Zhang Y (2008) A new alternating minimization algorithm for total variation image reconstruction. SIAM J Imaging Sci 1(3):248–272

    Article  MathSciNet  MATH  Google Scholar 

  • Wen YW, Chan RH (2012) Parameter selection for total-variation-based image restoration using discrepancy principle. IEEE Trans Image Process 21(4):1770–1781

    Article  MathSciNet  MATH  Google Scholar 

  • Wu C, Tai XC (2010) Augmented lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J Imaging Sci 3(3):300–339

    Article  MathSciNet  MATH  Google Scholar 

  • You YL, Kaveh M (2000) Fourth-order partial differential equations for noise removal. IEEE Trans Image Process 9(10):1723–1730

    Article  MathSciNet  MATH  Google Scholar 

  • Yun S, Woo H (2012) A new multiplicative denoising variational model based on \(m\)th root transformation. IEEE Trans on Image Process 21(5):2523–2533

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao XL, Wang F, Ng KM (2014) A new convex optimization model for multiplicative noise and blur removal. SIAM J Imaging Sci 7(1):456–475

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and the anonymous referees for their valuable suggestions and comments. This research is supported by 973 Program (2013CB329404), NSFC (61370147, 61170311), and the Fundamental Research Funds for the Central Universities (ZYGX2013Z005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Hui Ma.

Additional information

Communicated by Joerg Fliege.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, TH., Huang, TZ. & Zhao, XL. Spatially dependent regularization parameter selection for total generalized variation-based image denoising. Comp. Appl. Math. 37, 277–296 (2018). https://doi.org/10.1007/s40314-016-0342-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-016-0342-8

Keywords

Mathematics Subject Classification

Navigation