Skip to main content
Log in

Higher-order-compact simulation of unsteady flow past a rotating cylinder at moderate Reynolds numbers

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

A recently developed transformation-free higher-order compact finite difference scheme, in non-uniform cylindrical polar grids, is extended and applied to study the temporal development of two-dimensional viscous incompressible flow past a circular cylinder which starts translating and rotating impulsively from rest, for two moderate Reynolds numbers (\(Re\)) for the rotational parameter \(\alpha \) lying between 0.5 and 3. This scheme does not require transformation from the actual flow domain to the computational domain. The scheme is at least third-order accurate in space and second-order accurate in time. To compute the flow, streamfunction–vorticity (\(\psi \)\(\omega \)) formulation for the two-dimensional Navier–Stokes equations in polar coordinates is used. The drag and lift coefficients along with various other properties related to stream function and vorticity behavior are investigated. The computed results using present scheme for two (\( Re =500, Re =1{,}000\)) Reynolds numbers with different rotational parameters are compared with existing experimental and numerical results. Excellent agreement is obtained in all the cases, and in most of the cases, our numerical results are closer to the experimental ones than previously published numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Badr HM, Dennis SCR (1985) Time-dependent viscous flow past an impulsively started rotating and translating circular cylinder. J Fluid Mech 158:447–488

    Article  MathSciNet  MATH  Google Scholar 

  • Badr HM, Dennis SCR, Young PJS (1989) Steady and unsteady flow past a rotating circular cylinder at low Reynolds numbers. Comput Fluids 17:579–609

    Article  MATH  Google Scholar 

  • Badr HM, Coutanceau M, Dennis SCR, Ménard C (1990) Unsteady flow past a rotating circular cylinder at Reynolds numbers \(10^3\) and \(10^4\). J Fluid Mech 220:459–484

    Article  Google Scholar 

  • Batchelor GK (2005) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Bouard R, Coutanceau M (1980) The early stage of development of the wake behind an impulsively started cylinder for \(40< Re < {10}^4\). J Fluid Mech 101:583–607

    Article  Google Scholar 

  • Chen YM, Ou YR, Pearlstein AJ (1993) Development of the wake behind a circular cylinder impulsively started into rotatory and rectilinear motion. J Fluid Mech 253:449–484

    Article  MATH  Google Scholar 

  • Chew YT, Cheng M, Luo SC (1995) A numerical study of flow past a rotating circular cylinder using a hybrid vortex scheme. J Fluid Mech 299:35–71

    Article  MATH  Google Scholar 

  • Chou MH (2000) Numerical study of vortex shedding from a rotating cylinder immersed in a uniform flow field. Int J Numer Methods Fluids 32:545–567

    Article  MATH  Google Scholar 

  • Coutanceau M, Ménard C (1985) Influence of rotation on the near-wake development behind an impulsively started circular cylinder. J Fluid Mech 158:399–446

    Article  Google Scholar 

  • Gupta MM (1984) A fourth order Poisson solver. J Comput Phys 55:166–172

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta MM (1991) High accuracy solutions of incompressible Navier–Stokes equations. J Comput Phys 93:343–359

    Article  MathSciNet  MATH  Google Scholar 

  • Ingham DB (1983) Steady flow past a rotating cylinder. Comput Fluids 11:351–366

    Article  MATH  Google Scholar 

  • Ingham DB, Tang T (1990) A numerical investigation into the steady flow past a rotating circular cylinder at low and intermediate Reynolds numbers. J Comput Phys 87:91–107

    Article  MATH  Google Scholar 

  • Kalita JC, Ray RK (2009) A transformation-free HOC scheme for incompressible viscous flows past an impulsively started circular cylinder. J Comput Phys 228:5207–5236

    Article  MathSciNet  MATH  Google Scholar 

  • Kalita JC, Dalal DC, Dass AK (2001) Fully compact higher order computation of steady-state natural convection in a square cavity. Phys Rev E 64:1–13

    Article  Google Scholar 

  • Kalita JC, Dalal DC, Dass AK (2002) A class of higher order compact schemes for the unsteady two-dimensional convection-diffusion equations with variable convection coefficients. Int J Numer Methods Fluids 38:1111–1131

    Article  MathSciNet  MATH  Google Scholar 

  • Kalita JC, Dalal DC, Dass AK (2004) A transformation-free HOC scheme for steady state convection–diffusion on non-uniform grids. Int J Numer Methods Fluids 44:33–53

    Article  MathSciNet  MATH  Google Scholar 

  • Kalita JC, Dass AK, Nidhi N (2008) An efficient transient Navier–Stokes solver on compact nonuniform space grids. J Comput Appl Math 214:148–162

    Article  MathSciNet  MATH  Google Scholar 

  • Kang S, Choi H, Lee S (1999) Laminar flow past a rotating circular cylinder. Phys Fluids 11:3312–3321

    Article  MATH  Google Scholar 

  • Kelley CT (1995) Iterative methods for linear and nonlinear equations. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Li M, Tang T, Fornberg B (1995) A compact fourth-order finite difference scheme for the steady incompressible Navier–Stokes equations. Int J Numer Methods Fluids 20:1137–1151

    Article  MathSciNet  MATH  Google Scholar 

  • Loc TP (1975) Etude numérique de l’écoulement d’un fluide visqueux incompressible autour dun cylindre fixe ou en rotation Effet Magnus. J Mech 14:109–134

    MATH  Google Scholar 

  • Loc TP, Bouard R (1985) Numerical solution of the early stage of the unsteady viscous flow around a circular cylinder a comparison with experimental visualization and measurements. J Mech 160:93–117

    Google Scholar 

  • Mackinnon RJ, Johnson RW (1991) Differential equation based representation of truncation errors for accurate numerical solution. Int J Numer Methods Fluids 13:739–757

    Article  MATH  Google Scholar 

  • Mittal S, Kumar B (2003) Flow past a rotating cylinder. J Fluid Mech 476:303–334

    Article  MathSciNet  MATH  Google Scholar 

  • Padrino JC, Joseph DD (2006) Numerical study of the steady-state uniform flow past a rotating cylinder. J Fluid Mech 557:191–223

    Article  MathSciNet  MATH  Google Scholar 

  • Prandtl L (1925) The Magnus effect and windpowered ships. Naturwissenschaften 13:93–108

    Article  Google Scholar 

  • Prandtl L, Tietjens OG (1934) Applied hydro- and aeromechanics. Dover, New York

    MATH  Google Scholar 

  • Ray RK, Kalita JC (2010) A transformation-free HOC scheme for incompressible viscous flows on nonuniform polar grids. Int J Numer Methods Fluids 62:683–708

    MathSciNet  MATH  Google Scholar 

  • Ray RK (2011) A transformation-free HOC scheme for incompressible viscous flows past a rotating and translating circular cylinder. J Sci Comput 46:265–293

    Article  MathSciNet  MATH  Google Scholar 

  • Sanyasiraju YVSS, Manjula V (2007) Fourth-order semi-compact scheme for flow past a rotating and translating cylinder. J Sci Comput 30:389–407

    Article  MathSciNet  MATH  Google Scholar 

  • Sleijpen GLG, van der Vorst HA (1995) Hybrid bi-conjugate gradient methods for CFD problems. In: Hafez M, Oshima K (eds) Computational fluid dynamics review. Wiley, Chichester, pp 457–476

    Google Scholar 

  • Spotz WF, Carey GF (1995) High-order compact scheme for the steady stream-function vorticity equations. Int J Numer Methods Eng 38:3497–3512

    Article  MathSciNet  MATH  Google Scholar 

  • Spotz WF, Carey GF (1998) Formulation and experiments with high-order compact schemes for nonuniform grids. Int J Numer Methods Heat Fluid Flow 8:288–303

    Article  MATH  Google Scholar 

  • Stojković D, Breuer M, Durst F (2002) Effect of high rotation rates on the laminar flow around a circular cylinder. Phys Fluids 14:3160–3178

    Article  MathSciNet  MATH  Google Scholar 

  • Stojković D, Schön P, Breuer M, Durst F (2003) On the new vortex shedding mode past a rotating cylinder. Phys Fluids 15:1257–1260

    Article  MathSciNet  MATH  Google Scholar 

  • Strikwerda JC (1997) High-order-accurate schemes for incompressible viscous flow. Int J Numer Methods Fluids 24:715–734

    Article  MathSciNet  MATH  Google Scholar 

  • Tang T, Ingham DB (1991) On steady flow past a rotating circular cylinder at Reynolds numbers 60 and 100. Comput Fluids 19:217–230

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge H. M. Badr, M. Coutanceau, S. C. R. Dennis and C. Ménard, the authors of reference Badr et al. (1990) whose experimental visualization pictures have been used in this study for comparison, and also Cambridge University Press, the publisher of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra K. Ray.

Additional information

Communicated by Paul Milewski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, R.K., Kalita, J.C. Higher-order-compact simulation of unsteady flow past a rotating cylinder at moderate Reynolds numbers. Comp. Appl. Math. 35, 219–250 (2016). https://doi.org/10.1007/s40314-014-0191-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-014-0191-2

Keywords

Mathematics Subject Classification

Navigation