Skip to main content
Log in

The method of multipole fields for 3D vector tomography

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

To investigate the spherical tokamak plasmas the multipole fields method for the inversion of Doppler spectroscopy measurements is proposed. The method is based on the expansion of unknown vector field and ray transform on the special basis vector functions. An analytical expression for the ray transform of basis vector functions and the results of computer simulation are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1970) Handbook of mathematical functions with Formulas. Dover Publications, Graphs and Mathematical Table

    MATH  Google Scholar 

  • Balandin AL, Ono Y (2001) Tomographic determination of plasma velocity with the use of ion Doppler spectroscopy. Eur Phys J D 17:337–344

    Article  Google Scholar 

  • Bateman H, Erdelyi A (1953) Higher Transcendental Functions. McGraw-Hill, New York

    MATH  Google Scholar 

  • Bellan PM (2006) Fundamentals of plasma physics. Cambridge Univ, Press

    Book  Google Scholar 

  • Biedenharn LC, Louck JD (1981) Encyclopedia of Mathematics and its Applications., Angular Momentum in Quantum Physics. Theory and Applications,Encyclopedia of Mathematics and its Applications, Boston

    MATH  Google Scholar 

  • Blatt J, Weisskopf V (1952) Theoretical nuclear physics. Wiley, Appendix B

  • Cantarella Jason, DeTurck Dennis, Gluck Herman (2002) Vector Calculus and the Topology of Domains in 3-Space Amer. Math Month 109(5):409–442

    Article  MathSciNet  MATH  Google Scholar 

  • Colton D, Kress R (1992) Inverse acoustic and electromagnetic scattering theory. Springer, Berlin

    Book  MATH  Google Scholar 

  • Edmonds AR (1957) Angular momentum in quantum mechanics. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Erdelyi A, Magnus W, Oberhettinger F, Tricomi FG (1953) Higher transcendental functions. McGraw-Hill, New York

    MATH  Google Scholar 

  • Gradshtein IS, Ryzhik IM (2007) Tables of integrals. Series and Products. Academic Press, New York

    Google Scholar 

  • Hansen WW (1935) A new type of expansion in radiation problems. Phys Rev 47:139–143

    Article  MATH  Google Scholar 

  • Hill EH (1954) The theory of vector spherical harmonics. Am er J Phys 22:211–214

    Article  MathSciNet  MATH  Google Scholar 

  • Howard J (1996) Plasma physics and control fusion. Vector Tomogr Appl Plasma diagn 38:489–503

    Google Scholar 

  • Lions JL, Margenes E (1972) Non-Homogeneous boundary value problems and applications, vol 1. Springer, New York

    Book  Google Scholar 

  • Morse PM, Feshbach H (1953) Methods of theoretical physics. McGraw-Hill, New York

    MATH  Google Scholar 

  • Moses HE (1974) The use of vector spherical harmonics in global meteorology and aeronomy. J Atmos Sci 31:1490–1500

    Article  MathSciNet  Google Scholar 

  • Natterer F (1986) The mathematics of computerized tomography. John Wiley & Sons, Chichester and New York

    MATH  Google Scholar 

  • Natterer F, Wübbeling F (2001) Mathematical methods in image reconstruction. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Norton SJ (1987) Tomographic reconstruction of 2-D vector fields: application to flow imaging. J Geophys 97:161–168

    Article  Google Scholar 

  • Osman NF, Prince JL (1998) 3D vector tomography on bounded domains. Inverse Probl 14:185–196

    Article  MathSciNet  MATH  Google Scholar 

  • Schuster Th (2001) An efficient mollifier method for three-dimensional vector tomography: convergence analysis and implementation. Inverse Probl 17:739–766

    Article  MathSciNet  MATH  Google Scholar 

  • Sparr G, Strahlen K, Lindstrom K, Persson HW (1995) Doppler tomography for vector field. Inverse Probl 11(5):1051–1061

    Article  MathSciNet  MATH  Google Scholar 

  • Stein S (1961) Addition theorem for spherical wave functions. Quart Appl Math 19:15–24

    MathSciNet  MATH  Google Scholar 

  • Stratton JA (1941) Electromagnetic theory. McGrow-Hill, New York

    MATH  Google Scholar 

  • Varshalovich DA, Moskalev AN, Khersonskii VK (1988) Theory of angular momentum. World scientific publishing, Singapore

    Book  Google Scholar 

  • Watson GN (1945) A treatise on the theory of bessel functions. Cambridge Univ. Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Balandin.

Additional information

Communicated by Eduardo Souza de Cursi.

Appendix

Appendix

1.1 The Sobolev spaces

Let \(m\) be integer \(\geqslant 1 \). The Sobolev space \(H^m(\Omega )\) of order \(m\) on \(\Omega \) is defined by

$$\begin{aligned} H^m(\Omega )&=\{u \ |\ D^\alpha \in L^2(\Omega )\ \forall \alpha , |\alpha | \leqslant m \}, \nonumber \\ D^\alpha&=\frac{\partial ^{\alpha _1 + \cdots \alpha _n}}{\partial x_1^{\alpha _1}\cdots \partial x_n^{\alpha _n}}, \ \ \ \alpha ={\alpha _1, ... \alpha _n}, \ \ \ |\alpha |=\alpha _1+ \cdots + \alpha _n. \nonumber \end{aligned}$$

\(L^2(\Omega )\) is the set of all measurable functions \(u(x)\) in \(\Omega \) such that the norm

$$\begin{aligned} \Vert u\Vert _{L^2(\Omega )}=\Bigr (\int \limits _{\Omega }|u(x)|^2 dx \Bigl )^{1/2} < \infty \nonumber \end{aligned}$$

In the particular case \(\Omega = \mathbb R^N\) the definition is given in (Lions and Margenes 1972, p. 5).

In our case the \(H^1\) space have a norm given by

$$\begin{aligned} \Vert u\Vert _{H^1}^2 = \Vert u \Vert _{L_2}^2 + \Vert \nabla u \Vert _{L_2}^2, \end{aligned}$$
(33)

where we have abbreviated:

$$\begin{aligned} \Vert \nabla u\Vert _{L^2}^2 \mathop {=}\limits ^\mathrm{def} \sum \limits _{m=1}^n \Vert \partial _m u \Vert _{L^2}^2 , \ \ \partial _m= \frac{\partial }{\partial x_m}, \nonumber \end{aligned}$$

That is the space \(H^1({\mathbb R}^n)\) is the Hilbert space consisting of all \(u\) in \(L^2({\mathbb R}^n)\) that have finite values of the norm (33).

Theorem 1

(Funk-Hecke)

$$\begin{aligned} \int \limits _{S^{N-1}}\!\!\!\!\! F({\varvec{\omega }}\cdot {\varvec{\sigma }}) Y_{lm}({\varvec{\omega }}) d{\varvec{\omega }} \!=\! \frac{l! (4\pi )^{\frac{N}{2}-1} \ \Gamma (\frac{N}{2}-1)}{(l+N-3)!}Y_{lm}({\varvec{\sigma }}) \!\!\int \limits _{-1}^{1}\!\!\! F(t) C_l^{\frac{N}{2}-1}(t)(1-t^2)^{\frac{N-3}{2}} dt \end{aligned}$$

Proof

The proof can be found in Bateman and Erdelyi (1953), Erdelyi et al. (1953), Natterer (1986). \(\square \)

1.2 Vector spherical harmonics. Some properties

Since vector fields (a special case of tensor fields with spin \(S=1\)) are important in applied problems, some properties and the multipole expansion of vector fields have been considered in this section. Components of vector spherical harmonics in the rotation specified by the Euler angles \(\alpha , \beta , \gamma ,\) are transformed likewise the components of irreducible tensors Varshalovich et al. (1988). For example, scalar spherical functions \(Y_{lm}(\hat{\mathbf{r}})\), vector spherical harmonics \(\mathbf{Y}_{lm}^{L}(\hat{\mathbf{r}})\) are irreducible rank \(l\) tensors. Other examples of irreducible tensor operators are also the functions \(f(r)Y_{lm}(\hat{\mathbf{r}}),\) where \(f(r)\) is an arbitrary function of \(r\), \(\hat{\mathbf{r}}=\frac{\mathbf{r}}{r} .\)

There exist two types of sets of vector spherical harmonics. The first type of vector spherical harmonics \(\mathbf{Y}_{JM}^{L}(\hat{\mathbf{r}})\) writes in the form of a linear combination of scalar spherical harmonics.

$$\begin{aligned} \mathbf{Y}_{lm}^{L}(\hat{\mathbf{r}})= \sum \limits _{M,\sigma }C^{lm}_{LM1\sigma }Y_{LM}(\hat{\mathbf{r}}) \mathbf{e}_{\sigma } . \end{aligned}$$
(34)

Here \(C^{lm}_{LM1\sigma }\) are the Clebsh-Gordan coefficients, \(\mathbf{e}_{\sigma }\) are cyclic covariant basis vectors, \(\sigma = \pm 1,0,\) \(\mathbf{e}_{\pm 1}=\mp \frac{1}{\sqrt{2}}(\mathbf{e}_x\pm i\mathbf{e}_y),\ \ \mathbf{e}_{0}=\mathbf{e}_z.\)

Vectors \(\mathbf{Y}_{lm}^{L}(\hat{\mathbf{r}})\) satisfy the condition of orthogonality and completeness.

$$\begin{aligned} \int \limits _{S^2}\mathbf{Y}_{l^\prime m^\prime }^{L*}(\hat{\mathbf{r}})\cdot \mathbf{Y}_{lm}^{L}(\hat{\mathbf{r}}) ds(\hat{\mathbf{r}})= \delta _{l^\prime l}\delta _{m^\prime m} \end{aligned}$$
(35)
$$\begin{aligned} \sum \limits _{Llm}\mathbf{Y}_{lm}^{L*}(\hat{\mathbf{r}}^\prime ) \mathbf{Y}_{lm}^{L}(\hat{\mathbf{r}})=\sum \limits _{\sigma } \mathbf{e}_{\sigma }\mathbf{e}_{\sigma }^*\delta (\hat{\mathbf{r}} -\hat{\mathbf{r}}^\prime ). \end{aligned}$$
(36)

Under rotation of the frame of reference specified by the Euler angles \(\alpha ,\beta ,\gamma ,\) the vector spherical harmonics are transformed as follows Varshalovich et al. (1988).

$$\begin{aligned} \mathbf{Y}_{lm^{\prime }}^{L}(\hat{\mathbf{r}}^{\prime })=\sum \limits _{m=-l}^l \mathbf{Y}_{lm}^{L}(\hat{\mathbf{r}}) D_{mm^{\prime }}^l(\alpha ,\beta ,\gamma ) \end{aligned}$$
(37)

Another set of vector spherical harmonics has been introduced in Hansen (1935), Morse and Feshbach (1953).

$$\begin{aligned} \mathbf{P}_l^m(\hat{\mathbf{r}})&=\hat{\mathbf{r}} Y_{lm}(\hat{\mathbf{r}}) \end{aligned}$$
(38a)
$$\begin{aligned} \mathbf{C}_l^m(\hat{\mathbf{r}})&=\frac{1}{\sqrt{l(l+1)}}(\hat{\mathbf{r}} \times \nabla _{\hat{\mathbf{r}}})Y_{l m}(\hat{\mathbf{r}})= \frac{-1}{\sqrt{l(l+1)}} \Bigr ( \frac{1}{\sin \theta }\frac{\partial }{\partial \varphi }\hat{\varvec{\theta }}- \frac{\partial }{\partial \theta }\hat{\varvec{\varphi }} \Bigl )Y_{lm}(\hat{\mathbf{r}}) \end{aligned}$$
(38b)
$$\begin{aligned} \mathbf{B}_l^m(\hat{\mathbf{r}})&=\frac{1}{\sqrt{l(l+1)}} \nabla _{\hat{\mathbf{r}}}Y_{l m}(\hat{\mathbf{r}})= \frac{1}{\sqrt{l(l+1)}} \Bigr ( \frac{\partial }{\partial \theta }\hat{\varvec{\theta }}+ \frac{1}{\sin \theta }\frac{\partial }{\partial \varphi }\hat{\varvec{\varphi }} \Bigl )Y_{lm}(\hat{\mathbf{r}}), \end{aligned}$$
(38c)

where \(Y_{lm}(\hat{\mathbf{r}})\) are scalar spherical harmonics, and operators \(\nabla _\mathbf{r}, \nabla _{\hat{\mathbf{r}}}\) have the following form:

$$\begin{aligned} \nabla _\mathbf{r} = \hat{\mathbf{r}}\frac{\partial }{\partial r} + \frac{1}{r}\nabla _{\hat{\mathbf{r}}}, \ \ \nabla _{\hat{\mathbf{r}}}= \hat{\varvec{\theta }}\frac{\partial }{\partial \theta }+\frac{\hat{\varvec{\varphi }}}{\sin \theta }\frac{\partial }{\partial \varphi }. \end{aligned}$$
(39)

Under rotation of the frame of reference, the vector spherical harmonics \(\mathbf{P}_l^m, \mathbf{C}_l^m, \mathbf{B}_l^m\) are transformed as irreducible tensor operators (37).

The vector spherical harmonics are pointwise orthogonal,

$$\begin{aligned} \mathbf{P}_l^m \cdot \mathbf{C}_l^m = \mathbf{C}_l^m \cdot \mathbf{B}_l^m = \mathbf{B}_l^m \cdot \mathbf{P}_l^m = 0, \end{aligned}$$
(40)

and satisfy the orthogonality relation

$$\begin{aligned} \int \limits _{S^2}\mathbf{P}_l^m(\hat{\mathbf{r}})\cdot {\mathbf{P}_{l^{\prime }}^{m^{\prime }}}^{*}(\hat{\mathbf{r}}) \ ds(\hat{\mathbf{r}})&= \int \limits _{S^2}\mathbf{C}_l^m(\hat{\mathbf{r}})\cdot {\mathbf{C}_{l^{\prime }}^{m^{\prime }}}^{*}(\hat{\mathbf{r}})\ ds(\hat{\mathbf{r}}) \nonumber \\&= \int \limits _{S^2}\mathbf{B}_l^m(\hat{\mathbf{r}})\cdot {\mathbf{B}_{l^{\prime }}^{m^{\prime }}}^{*}(\hat{\mathbf{r}}) \ ds(\hat{\mathbf{r}}) =\frac{4\pi }{2l+1}\frac{(l+|m|)!}{(l-|m|)!}\delta _{ll^{\prime }}\delta _{mm^{\prime }}.\quad \qquad \end{aligned}$$
(41)

for any \(l=0,1,2,\ldots \) \(|m|\leqslant l\).

An example of vectors \(\mathbf{C}_1^0(\hat{\mathbf{r}})\) and \(\mathbf{C}_2^0(\hat{\mathbf{r}})\) is shown in Fig. 2. The set of vector spherical harmonics forms a complete orthogonal set in the space \([L^2(S^2)]^3\); therefore, any function \(\mathbf{u} \in [L^2(S^2)]^3\) may be represented in the form

$$\begin{aligned} \mathbf{u}(\hat{\mathbf{r}}) =\sum \limits _{l=0}^{\infty }\sum \limits _{m=-l}^{l}[a_{lm}\mathbf{P}_l^m(\hat{\mathbf{r}})+ b_{lm}\mathbf{B}_l^m(\hat{\mathbf{r}})+ c_{lm}\mathbf{C}_l^m(\hat{\mathbf{r}})]= \mathbf{u}_{p}(\hat{\mathbf{r}})+\mathbf{u}_{s}(\hat{\mathbf{r}}), \end{aligned}$$
(42)
$$\begin{aligned} \mathbf{u}_{p}(\hat{\mathbf{r}})\!=\!\sum \limits _{l=0}^{\infty }\sum \limits _{m=-l}^{l} a_{lm}\mathbf{P}_l^m(\hat{\mathbf{r}}),\ \mathbf{u}_{s}(\hat{\mathbf{r}})\!=\!\sum \limits _{l=0}^{\infty }\sum \limits _{m=-l}^{l} [b_{lm}\mathbf{B}_l^m(\hat{\mathbf{r}})+ c_{lm}\mathbf{C}_l^m(\hat{\mathbf{r}})], \end{aligned}$$
(43)

where \(\mathbf{u}_{p},\mathbf{u}_{s}\) are, respectively, the potential and the solenoidal components of the field.

Fig. 2
figure 2

Vector spherical harmonics. The view from the positive direction of axis \(z\).

1.3 Hansen vectors

$$\begin{aligned} \mathbf{M}_l^m(\mathbf{r})&=\nabla _\mathbf{r}\times [\mathbf{r}\, z_l(\varkappa r) Y_{lm}(\hat{\mathbf{r}})]= \sqrt{l(l+1)}\, z_l(\varkappa r)\,\mathbf{C}_l^m(\hat{\mathbf{r}}),\end{aligned}$$
(44a)
$$\begin{aligned} \mathbf{N}_l^m(\mathbf{r})&=\frac{1}{\varkappa }\nabla _\mathbf{r}\times \nabla _\mathbf{r}\times [\mathbf{r}\, z_l(\varkappa r) Y_{lm}(\hat{\mathbf{r}})]= l(l+1)\frac{z_l(\varkappa r)}{\varkappa r }\, \mathbf{P}_l^m(\hat{\mathbf{r}}), \end{aligned}$$
(44b)
$$\begin{aligned} \mathbf{L}_l^m(\mathbf{r})&= \nabla _\mathbf{r}[ z_l(\varkappa r)Y_{lm}(\hat{\mathbf{r}})]\nonumber \\&=\sqrt{l(l+1)}\frac{z_l(\varkappa r)}{\varkappa r }\, \mathbf{B}_l^m(\hat{\mathbf{r}})\!+\!\frac{d z_l(\varkappa r)}{d(\varkappa r)} \,\mathbf{P}_l^m(\hat{\mathbf{r}}), \end{aligned}$$
(44c)

where \(z_l(\varkappa r)= j_l(\varkappa r), y_l(\varkappa r), h_l^{(1)}(\varkappa r), h_l^{(2)}(\varkappa r)\) designate any spherical Bessel function of the first, the second and the third kind, respectively.

1.4 \(D\)– Wigner functions

Matrices \(D^J_{M_1\,M_2}(\alpha ,\beta ,\gamma )\) are representations of the group of rotation SO(3) and are usually written as production three functions, each depending only of one Euler angle \((\alpha , \beta , \gamma )\):

$$\begin{aligned} D^J_{M_1\,M_2}(\alpha ,\beta ,\gamma )=e^{-\mathsf{i}M_1\alpha }\, d^J_{M_1\,M_2}(\beta )\,e^{-\mathsf{i}M_2 \gamma }. \end{aligned}$$

Here \(\alpha \) \((0 \leqslant \alpha < 2\pi )\) is an angle of rotation with respect to the initial axis \(z\), \(\beta \) \((0 \leqslant \beta \leqslant \pi )\) is an angle of rotation with respect to a new (turned) axis \(y^\prime \), and \(\gamma \) \((0 \leqslant \gamma < 2\pi )\) is an angle of rotation with respect to a new (turned) axis \(z^\prime \). Any rotation of frame of reference may be executed sequentially by rotation of axis \(z\), next, a new axis \(y^\prime \) and a new axis \(z^\prime \) at angles, respectively, \((\alpha ,\beta ,\gamma )\). Real functions \(d^J_{M_1\,M_2}(\beta )\) have the following precise representation

$$\begin{aligned} d^J_{M_1\,M_2}(\beta )&= (-1)^{M_1-M_2}[(J+M_1)!(J-M_1)!(J+M_2)!(J-M_2)!]^{1/2} \nonumber \\&\times \sum _k(-1)^k\frac{(\cos \beta /2)^{2J-2k-M_1+M_2} (\sin \beta /2)^{2k+M_1-M_2}}{k!(J-M_1-k)!(J+M_2-k)!(M_1-M_2+k)!}. \end{aligned}$$

Index \(k\) runs through all the integer values for which the factorial’s argument has the positive values

$$\begin{aligned} \max (0,M_2-M_1)\le k\le \min (J-M_1,J+M_2) \end{aligned}$$

[see Varshalovich et al. (1988)]. Useful recurrent formulas for computing \(d^J_{M_1\,M_2}(\beta )\) may be found in Biedenharn and Louck (1981). In Edmonds (1957) one can find the method for computing \(D^J_{M_1\,M_2}(\alpha ,\beta ,\gamma )\) for arbitrary arguments with the use of the following relation:

$$\begin{aligned} D^J_{M_1\,M_2}(\alpha ,\beta ,\gamma )= \sum _{m}e^{-\mathsf{i}M_1 \alpha }\cdot d^J_{M_1\,m}(\pi /2)\cdot e^{-\mathsf{i}m \beta } \cdot d^J_{m\,M_2}(\pi /2)\cdot e^{-\mathsf{i}M_2 \gamma }, \end{aligned}$$

where \( d^J_{M_1\,M_2}(\pi /2)\) may be easily computed.

Functions \(D_{M_1\,M_2}^J(\alpha ,\beta ,\gamma )\), when \(\gamma =0\), satisfy the conditions of orthogonality and normalisation.

$$\begin{aligned} \int \!\!\! D^{J}_{M_1\,M_2}(\varvec{\nu })D^{J^\prime *}_{M_1^\prime \,M_2^\prime }(\varvec{\nu }) d\Omega&\!=\! \frac{4\pi }{2J+1}\delta _{JJ^\prime }\delta _{M_1M_1^\prime }, \ {\varvec{\nu }}\!=\!(\alpha ,\beta ), \\ \ d\Omega =sin\beta d\beta d\alpha ,&\ 0 \leqslant \alpha < 2\pi , \ \ \ 0\leqslant \beta \leqslant \pi . \nonumber \end{aligned}$$
(45)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balandin, A.L. The method of multipole fields for 3D vector tomography. Comp. Appl. Math. 35, 203–218 (2016). https://doi.org/10.1007/s40314-014-0190-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-014-0190-3

Keywords

Mathematics Subject Classification

Navigation