Skip to main content
Log in

On Controllability and Normalizability for Linear Descriptor Systems

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

Complete and strong controllability properties for linear descriptor systems are studied. We show that complete and strong controllability for a descriptor system is equivalent to the controllability for some suitably designed normal systems under natural assumptions. The normal systems are obtained by a numerically stable algorithm which is solely based on singular value decomposition of system matrices. The developed technique has also been exploited in designing some appropriate feedbacks such that the closed loop system becomes normal and asymptotically stable in square case and nonsingular in rectangular case. The presented theory is applied to some real-life problems for the illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Banaszuk, A., Kociecki, M., & Przyłuski, K. (1989). On hautus-type conditions for controllability of implicit linear discrete-time systems. Circuits, Systems and Signal Processing, 8(3), 289–298.

    Article  MATH  MathSciNet  Google Scholar 

  • Berger, T., & Reis, T. (2013). Controllability of linear differential–algebraic systems a survey. In A. Ilchman & T. Reis (Eds.), Surveys in differential–algebraic equations I. Differential–algebraic equations forum (pp. 1–61). Berlin: Springer.

    Chapter  Google Scholar 

  • Bernhard, P. (1982). On singular implicit linear dynamical systems. SIAM Journal on Control and Optimization, 20(5), 612–633.

    Article  MATH  MathSciNet  Google Scholar 

  • Bobinyec, K., Campbell, S. L., & Kunkel, P. (2011). Full order observers for linear DAEs. In: 50th IEEE conference on decision and control and European control conference (CDC-ECC), 2011 (pp. 4011–4016). Orlando, FL.

  • Boughari, H., & Radhy, N. (2007). Regulation of linear continuous-time singular systems with constrained states and controls. International Journal of Systems Science, 38(9), 689–698.

    Article  MATH  MathSciNet  Google Scholar 

  • Bunse-Gerstner, A., Mehrmann, V., & Nichols, N. K. (1992). Regularization of descriptor systems by derivative and proportional state feedback. SIAM Journal on Matrix Analysis and Applications, 13(1), 46–67.

    Article  MATH  MathSciNet  Google Scholar 

  • Byers, R., Geerts, T., & Mehrmann, V. (1997). Descriptor systems without controllability at infinity. SIAM Journal on Control and Optimization, 35(2), 462–479.

    Article  MATH  MathSciNet  Google Scholar 

  • Campbell, S. L. (1987). Comment on controlling generalized state-space (descriptor) systems. International Journal of Control, 46(6), 2229–2230.

    Article  Google Scholar 

  • Christodoulou, M., & Paraskevopoulos, P. (1985). Solvability, controllability, and observability of singular systems. Journal of Optimization Theory and Applications, 45(1), 53–72.

    Article  MATH  MathSciNet  Google Scholar 

  • Chu, K. W. E. (1987). Controllability of descriptor systems. International Journal of Control, 46(5), 1761–1770.

    Article  MATH  MathSciNet  Google Scholar 

  • Chua, L. O., Desoer, C. A., & Kuh, E. S. (1987). Linear and nonlinear circuits. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Cobb, D. (1984). Controllability, observability, and duality in singular systems. IEEE Transactions on Automatic Control, 29(12), 1076–1082.

    Article  MathSciNet  Google Scholar 

  • Dai, L. (1989a). The difference between regularity and irregularity in singular systems. Circuits, Systems and Signal Processing, 8(4), 435–444.

    Article  MATH  MathSciNet  Google Scholar 

  • Dai, L. (1989b). Singular control systems, lecture notes in control and information sciences. Berlin: Springer.

    Google Scholar 

  • Duan, G. R. (1998). Eigenstructure assignment and response analysis in descriptor linear systems with state feedback control. International Journal of Control, 69(5), 663–694.

    Article  MATH  MathSciNet  Google Scholar 

  • Duan, G. R., & Patton, R. J. (1997). Eigenstructure assignment in descriptor systems via proportional plus derivative state feedback. International Journal of Control, 68(5), 1147–1162.

    Article  MATH  MathSciNet  Google Scholar 

  • Frankowska, H. (1990). On controllability and observability of implicit systems. Systems and Control Letters, 14(3), 219–225.

    Article  MATH  MathSciNet  Google Scholar 

  • Gantmacher, F. R. (1959). The theory of matrices (Vol. 2). New York: Chelsea Publishing Company.

    MATH  Google Scholar 

  • Geerts, T. (1993). Solvability conditions, consistency, and weak consistency for linear differential–algebraic equations and time-invariant singular systems: the general case. Linear Algebra and its Applications, 181, 111–130.

    Article  MATH  MathSciNet  Google Scholar 

  • Hautus, M. (1970). Stabilization controllability and observability of linear autonomous systems. In: Indagationes mathematicae (proceedings) (vol. 73, pp. 448–455). Elsevier.

  • Hou, M. (2004). Controllability and elimination of impulsive modes in descriptor systems. IEEE Transactions on Automatic Control, 49(10), 1723–1729.

    Article  Google Scholar 

  • Ishihara, J. Y., & Terra, M. H. (2001). Impulse controllability and observability of rectangular descriptor systems. IEEE Transactions on Automatic Control, 46(6), 991–994.

    Article  MATH  MathSciNet  Google Scholar 

  • Karampetakis, N. P., & Gregoriadou, A. (2014). Reachability and controllability of discrete-time descriptor systems. International Journal of Control, 87(2), 235–248.

    Article  MathSciNet  Google Scholar 

  • Kumar, A., & Daoutidis, P. (1999). Control of nonlinear differential algebraic equation systems with applications to chemical processes (Vol. 397). Boca Raton: CRC Press.

    MATH  Google Scholar 

  • Kunkel, P., & Mehrmann, V. L. (2006). Differential–algebraic equations: analysis and numerical solution. Berlin: European Mathematical Society.

  • Lewis, F. L. (1986). A survey of linear singular systems. Circuits, Systems and Signal Processing, 5(1), 3–36.

    Article  MATH  MathSciNet  Google Scholar 

  • Liao, F., Ren, Z., Tomizuka, M., & Wu, J. (2014). Preview control for impulse-free continuous-time descriptor systems. International Journal of Control, 1–25. doi:10.1080/00207179.2014.996769.

  • Lovass-Nagy, V., Powers, D., & Schilling, R. (1994). On regularizing descriptor systems by output feedback. IEEE Transactions on Automatic Control, 39(7), 1507–1509.

    Article  MATH  MathSciNet  Google Scholar 

  • Luenberger, D. G. (1977). Dynamic equations in descriptor form. IEEE Transactions on Automatic Control, 22(3), 312–321.

    Article  MATH  MathSciNet  Google Scholar 

  • Mishra, V. K., & Tomar, N. K. (2015). On complete and strong controllability for rectangular descriptor systems. Circuits, Systems, and Signal Processing, 1–12. doi:10.1007/s00034-015-0111-8.

  • Ozcaldiran, K., & Lewis, F. (1990). On the regularizability of singular systems. IEEE Transactions on Automatic Control, 35(10), 1156–1160.

    Article  MathSciNet  Google Scholar 

  • Pandolfi, L. (1980). Controllability and stabilization for linear systems of algebraic and differential equations. Journal of Optimization Theory and Applications, 30(4), 601–620.

    Article  MATH  MathSciNet  Google Scholar 

  • Polderman, J. W., & Willems, J. C. (1998). Introduction to mathematical systems theory: A behavioral approach (Vol. 26). Berlin: Springer.

    Google Scholar 

  • Rosenbrock, H. H. (1974). Structural properties of linear dynamical systems. International Journal of Control, 20(2), 191–202.

    Article  MATH  MathSciNet  Google Scholar 

  • Stefanovski, J. D. (2011). New results and application of singular control. IEEE Transactions on Automatic Control, 56(3), 632–637.

    Article  MathSciNet  Google Scholar 

  • Verghese, G. C., Levy, B. C., & Kailath, T. (1981). A generalized state-space for singular systems. IEEE Transactions on Automatic Control, 26(4), 811–831.

    Article  MATH  MathSciNet  Google Scholar 

  • Yip, E., & Sincovec, R. (1981). Solvability, controllability, and observability of continuous descriptor systems. IEEE Transactions on Automatic Control, 26(3), 702–707.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, Q., Xu, X., Yuan, Z., Teng, Y., & Yin, G. (1989). Further comments on controllability of descriptor systems. International Journal of Control, 50(6), 2645–2646.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, Q., Liu, C., & Zhang, X. (2012). Complexity, analysis and control of singular biological systems (Vol. 421). Berlin: Springer.

    Book  MATH  Google Scholar 

  • Zubova, S. P. (2011). On full controllability criteria of a descriptor system. The polynomial solution of a control problem with checkpoints. Automation and Remote Control, 72(1), 23–37.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The research of the second author was supported by the Council for Scientific and Industrial Research (CSIR), New Delhi, under Grant Number 25(0195)11/EMR-II. The third author of the paper gratefully acknowledges the support provided by the University Grants Commission, New Delhi, in the form of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nutan Kumar Tomar.

Appendix

Appendix

Algorithm to find the matrix S used in Theorem 1

In the following steps, SVD means singular value decomposition.

  1. 1.

    \(B=U_1\begin{bmatrix} D_1 \\ 0_{(m-r) \times r}\\ \end{bmatrix} V_1^T\) (SVD of B).

  2. 2.

    \(Q=\begin{bmatrix} V_1D_1^{-1}&0_{r \times (m-r)} \\ 0_{(m-r) \times r}&I_{m-r} \\ \end{bmatrix}U^T_1\).

  3. 3.

    \(E_2=\begin{bmatrix} 0_{(m-r) \times (n+r-m)}&I_{m-r} \\ \end{bmatrix}\)QE.

  4. 4.

    \(E_2=U_2\begin{bmatrix} D_2&0_{(m-r) \times (n+r-m)}\\ \end{bmatrix}V_2^T\) (SVD of \(\tilde{E}\)).

  5. 5.

    \(S_0=V_2\begin{bmatrix} 0_{(m-r) \times (n+r-m)}&D_2^{-1}U_2^T \\ I_{(n+r-m)}&0_{(n+r-m) \times (m-r)} \\ \end{bmatrix}\).

  6. 6.

    \(S=\begin{bmatrix} 0_{n \times (m-n)}&S_0 \\ \end{bmatrix}\)Q.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, V.K., Tomar, N.K. & Gupta, M.K. On Controllability and Normalizability for Linear Descriptor Systems. J Control Autom Electr Syst 27, 19–28 (2016). https://doi.org/10.1007/s40313-015-0218-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-015-0218-y

Keywords

Navigation