Skip to main content
Log in

Higher-Order Sliding Mode Control Scheme with an Adaptation Low for Uncertain Power DC–DC Converters

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

In this paper, a higher-order sliding mode controller for a power DC–DC converter is proposed. The uncertainty and disturbance are implicit to be unknown. A detailed analysis to explore the local and global stability of a Buck DC–DC converter was presented in this paper. Different control schemes were implemented to regulate the output voltage and to eliminate the high current ripples for the proposed converter, beginning with a proportional-integral-derivative compensation scheme, then a sliding mode controller, a higher-order sliding mode controller and finally an adaptation low with higher-order sliding mode controller (AHOSMC). Stability and robustness of the AHOSMC are proved by using the classical Lyapunov criterion. The sensitivity of parameters variation is analyzed, and a detailed bifurcation analysis is undertaken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(T_{r}\) :

Controlled switch (IGBT)

\(D\) :

Uncontrolled switch (diode)

\(L\) :

Inductor

\(C\) :

Capacitor

\(R\) :

Load resistance

\(r_{L}\) :

Equivalent series resistance of \(L\)

\(r_{c}\) :

Equivalent series resistance of \(C\)

\(i_{L}\) :

Inductor current

\(K_{p}, T_{i}, T_{d}\) :

Parameters of the PID controller

\(r\) :

Degree of the sliding surface

\(I_{s}\) :

Load current

\(T_\mathrm{Req}\) :

Equivalent control

\(H_\mathrm{v}\) :

Sensor gain for the output voltage

\(V_\mathrm{ref}\) :

Reference voltage

\(k\) :

Entire number

\(\vartheta \) :

Positive definite matrix

\(k_{1}\) :

Positive gain

\(V_{e}\) :

Input voltage

\(V_\mathrm{C}\) :

Output capacitor voltage

\(V_\mathrm{rc}\) :

Voltage drop across \(r_{C}\)

\(V_\mathrm{s}\) :

Output voltage (the sum of \(V_{C}\) and \(V_\mathrm{rc})\)

\(\alpha \) :

Duty ratio

\(T\) :

Switching cycle

\(F\) :

Switching frequency

\(T_{R}\) :

Switching function which can equal to 1 or 0, the control law

\(S\) :

Sliding surface

\(\lambda \) :

Strictly positive constant

\(K\) :

Positive constant

\(T_\mathrm{Rn}\) :

Stabilizing control

\(H_{i}\) :

Sensor gain for the inductor current

\(i_\mathrm{ref}\) :

Reference current

\(\sigma \) :

Sliding function

\(v\) :

Control law

\(V\) :

Lyapunov function

References

  • Benbouzid, M., Beltran, B., Amirat, Y., Yao, G., Han, J., & Mangel, H. (2014). Second-order sliding mode control for DFIG-based wind turbines fault ride-through capability enhancement. ISA Transactions, 53(3), 827–833.

    Article  Google Scholar 

  • Das, M., & Mahanta, C. (2014). Optimal second order sliding mode control for nonlinear uncertain systems. ISA Transactions, 53(4), 1191–1198.

    Article  Google Scholar 

  • Deane, J. H. B., & Hamill, D. C. (1990). Analysis, simulation and experimental study of chaos in the buck converter. In IEEE proceedings of power electronics, pp. 491–498.

  • Defoort, M., Floquet, T., Kokosyd, A., et al. (2009). A novel higher order sliding mode control scheme. System & Control Letters, 58(2), 102–108.

    Article  MATH  Google Scholar 

  • Dong, L., & Tang, W. C. (2014). Adaptive backstepping sliding mode control of flexible ball screw drives with time-varying parametric uncertainties and disturbances. ISA Transactions, 53(1), 110–116.

    Article  Google Scholar 

  • Filippov, A. F. (1964). Differential equations with discontinuous right-hand side. American Mathematical Society Translations, 42, 199–231.

    MATH  Google Scholar 

  • Hadri Hamida, A. (2011). Contribution à l’analyse et à la commande des convertisseurs DC–DC parallèles à PWM. Ph.D. Thesis, University of Biskra, Algeria.

  • Hadri Hamida, A., Allag, A., Mimoune, S. M., Ayad, M. Y., Becherif, M., Miliani, E., Miraoui, A., & Khanniche, S. (2006). Application of an adaptive nonlinear control strategy to AC–DC-PWM converter feeding induction heating. In IEEE conference on IECON 2006, France, pp. 1598–1602.

  • Hadri Hamida, A., Zerouali, S., & Allag, A. (2013). Toward a nonlinear control of an AC–DC–PWM converter dedicated to induction heating. In Frontiers in energy. Berlin, Heidelberg: Higher Education Press and Springer, vol. 7, no. 2 pp. 140–145.

  • Hadri-Hamida, A., Allag, A., et al. (2009). A nonlinear adaptive backstepping approach applied to a three phase pwm AC–DC converter feeding induction heating. ELSEVIER Journals, Communications in Nonlinear Science and Numerical Simulation, 14(4), 1515–1525.

    Article  Google Scholar 

  • Hadri-Hamida, A., Ghoggal, A., & Zerouali, S. (2014). Bifurcation analysis of a Buck DC–DC converter applied to distributed power systems. International Journal of System Assurance Engineering and Management, SPRINGER Journals, Sweden, 5(3), 307–312.

    Google Scholar 

  • Li, S., Wang, Z., & Wang, G. (2013). Proportional-integral differential neural network based sliding-mode controller for modular multi-level high-voltage DC converter of offshore wind power. Electric Power Components and Systems, 41(4), 427–446.

    Article  Google Scholar 

  • Maity, S., Tripathy, D., Bhattacharya, T. K., & Banerjee, S. (2007). Bifurcation analysis of PWM-1 voltage-mode-controlled buck converter using the exact discrete model. IEEE Transactions on Circuits and Systems, 54(5), 1120–1130.

    Article  MathSciNet  Google Scholar 

  • Mattavelli, P., Rossetto, L., Spiazzi, G., & Tenti, P. (1993). General-purpose sliding-mode controller for dc/dc converter applications. In IEEE Proceedings of PESC, pp. 609–615.

  • Mazumder, S. K., Nayfeh, A. H., & Boroyevich, D. (2001). Theoretical and experimental investigation of the fast- and slow-scale instabilities of a DC–DC converter. IEEE Transactions on Power Electronics, 16(2), 201–216.

    Article  Google Scholar 

  • Middlebrook, R. D., & Cuk, S. (1977). A general unified approach to modelling switching DC to DC converters in discontinuous conduction mode. In IEEE power electronic specialists conference, pp. 36–57.

  • Mondal, S., & Mahanta, C. (2013). Adaptive integral higher order sliding mode controller for uncertain system. Journal of Control Theory Applications CAS and Springer, Berlin, Heidelberg, vol. 11, no. 1, 61–68.

  • Mondal, S., & Mahanta, C. (2011). Nonlinear sliding surface based second order sliding mode controller for uncertain linear systems. Communications in Nonlinear Science and Numerical Simulation, 16(9), 3760–3769.

    Article  MATH  MathSciNet  Google Scholar 

  • Nayfeh, A. H., & Balachandran, B. (1995). Applied nonlinear dynamics. New York: Wiley.

    Book  MATH  Google Scholar 

  • Ramash Kumar, K., & Jeevananthan, S. (2012). Analysis, design, and implementation of hysteresis modulation sliding-mode controller for negative-output elementary boost converter. Electric Power Components and Systems, 40(3), 292–311.

    Article  Google Scholar 

  • Rosehart, W. D., & Cañizares, C. A. (1999). Bifurcation analysis of various power system models. International Journal of Electrical Power & Energy Systems, 21(3), 171–182.

    Article  Google Scholar 

  • Song, Z., & Sun, K. (2014). Adaptive backstepping sliding mode control with fuzzy monitoring strategy for a kind of mechanical system. ISA Transactions, 53(1), 125–133.

    Article  Google Scholar 

  • Tan, S. C., Lai, Y. M., Cheung, M. K. H., & Tse, C. K. (2004). An adaptive sliding mode controller for buck converter in continuous conduction mode. In IEEE proceedings of exposition APEC, pp. 1395–1400.

  • Tan, S. C., Lai, Y. M., Tse, C. K., & Cheung, M. K. H. (2004). A pulse-width modulation based sliding mode controller for buck converters. In IEEE Proceedings of PESC’04, pp. 3647–3653.

  • Tan, S. C., Lai, Y. M., Cheung, M. K. H., & Tse, C. K. (2005). On the practical design of a sliding mode voltage controlled buck converter. IEEE Transactions on Power Electronics, 20(2), 425–437.

    Article  Google Scholar 

  • Tan, S. C., Lai, Y. M., Tse, C. K., & Martin, M. K. H. (2006). Adaptive feedforward and feedback control schemes for sliding mode controlled power converters. IEEE Transactions on Power Electronics, 21(1), 182–192.

    Article  Google Scholar 

  • Tsai, J.-F., & Chen, Y.-P. (2007). Sliding mode control and stability analysis of buck DC–DC converter. International Journal of Electronics, 94(3), 209–222.

    Article  Google Scholar 

  • Tsang, K. M., & Chan, W. L. (2008). Non-linear cascade control of DC/DC buck converter. Electric Power Components and Systems, 36(9), 977–989.

    Article  Google Scholar 

  • Tse, C. K., & Adams, K. M. (1992). Quasi-linear modeling and control of DC/DC converters. IEEE Transactions on Power Electronics, 7(2), 315–323.

    Article  Google Scholar 

  • Utkin, V. I., & Young, K. K. D. (1978). Methods for constructing discontinuity planes in multidimensional variable structure systems. Automatic Remote Control, 39, 1466–1470.

    MATH  Google Scholar 

  • Utkin, V. I. (1992). Sliding mode in control and optimization. Berlin: Springer.

    Book  Google Scholar 

  • Utkin, V., Guldner, J., & Shi, J. X. (1999). Sliding mode control in electromechanica systems. London: Taylor and Francis.

    Google Scholar 

  • Venkataramanan, R., Sabanoivc, A., & Cuk, S. (1985). Sliding mode control of DC-to-DC converters. In IEEE Proceedings of IECON, pp. 251–258.

  • Wang, H. O., Chen, D. S., & Bushnellt, L. G. (2000). Dynamic feedback control of bifurcations. In IEEE proceedings of decision and control, pp. 1619–1624.

  • Wiggins, S. (1990). Introduction to applied nonlinear dynamical systems and chaos. New York: Springer.

    Book  MATH  Google Scholar 

  • Zhang, C., Wang, J., Li, S., Wu, B., & Qian, C. (2015). Robust control for PWM-based DC–DC buck power converters with uncertainty via sampled-data output feedback. IEEE Transactions Power Electronics,30(1).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amel Hadri-Hamida.

Appendix

Appendix

1.1 PID and SMC Controllers

We have introduced firstly a PID feedback controller which has the following transfer function:

$$\begin{aligned} G_\mathrm{contr} (p)=k_p \frac{1+p\cdot T_i +p^{2}\cdot T_i \cdot T_d }{p\cdot T_i } \end{aligned}$$
(21)

Then, we have presented the SMC controller. In SMC, the trajectory of the system is constrained to move or slide along a predetermined hyper plane in the state space. Such mode is completely robust and independent of parametric variations and disturbances (Utkin 1992; Song and Sun 2014). By eliminating the parasitic effect of the capacitor (\(r_{C} = 0\)), The system is described by the following state-space equations (Mondal and Mahanta 2013):

$$\begin{aligned} \left\{ {\begin{array}{l} \dot{x} =F\left( x \right) +G\left( {x,V_{e}} \right) T_{R} \\ y=S\left( x \right) \\ \end{array}} \right. \end{aligned}$$
(22)

where the matrices F and G are given by:

$$\begin{aligned} F\left( x \right) = \left[ {\begin{array}{l} -\frac{r_{L} }{L}i_L -\frac{1}{L}V_\mathrm{C} \\ \frac{1}{C}i_L -\frac{1}{\hbox {RC}}V_\mathrm{C} \\ \end{array}} \right] , \quad G\left( {x,V_{e} } \right) = \left[ {\begin{array}{l} \frac{V_{e} }{L} \\ 0 \\ \end{array}} \right] \end{aligned}$$
(23)

And S(x) is the measured output function known as the sliding variable. The general form of S(x) is given as follows (Utkin 1992):

$$\begin{aligned} S\left( x \right) =\left( {\frac{d}{dt}+\uplambda _x } \right) ^{r-1}e\left( x \right) \end{aligned}$$
(24)
Table 1 Parameters of the buck DC–DC converter (Hadri Hamida 2011)

It is the first convergence condition which permits dynamic system to converge toward the sliding surfaces. It is a question of formulating a positive scalar function \(\hbox {V(x) }> 0\) for the system states variables which are defined by the following Lyapunov function (Utkin et al. 1999; Filippov 1964):

$$\begin{aligned}&V\left( x \right) =\frac{1}{2}S\left( x \right) ^{T}S\left( x \right) \end{aligned}$$
(25)
$$\begin{aligned}&\dot{V} \left( x \right) <0\Rightarrow S\left( x \right) ^{T}\dot{S} \left( x \right) <0 \end{aligned}$$
(26)

Now, we define

$$\begin{aligned} T_{R} \left( t \right) =\frac{1}{2}\left( {1+\hbox {sign}\left( S \right) } \right) =T_{R_{eq} } \left( t \right) +T_{R_n } \left( t \right) \end{aligned}$$
(27)

where \(T_\mathrm{Req}(t)\) and \(T_{Rn}(t)\) represent the equivalent control (Utkin 1992) and the nonlinear switching control and:

$$\begin{aligned} \hbox {sign} \left( S \right) = \left\{ {\begin{array}{ll} 1 &{}S\left( x \right) >0 \\ -1 &{}S\left( x \right) <0 \\ \end{array}} \right. \end{aligned}$$

The sliding surfaces are given by the following expression (Table 1):

$$\begin{aligned} S=e\left( {V_s } \right) +e\left( {i_L } \right) =V_{r\acute{e}f} -H_v V_s +i_{r\acute{e}f} -H_i i_L \end{aligned}$$
(28)

and consequently, their derivatives are given by:

$$\begin{aligned} \dot{S} =E\left( x \right) +QT_{R} \end{aligned}$$
(29)

where \(x = [i_{L} \quad V_\mathrm{C}]^{ T}\),

$$\begin{aligned} E=\left( {\frac{H_{i} r_{L} }{L}-\frac{H_{\mathrm{v}}}{\mathrm{C}}} \right) i_{L} +\frac{H_{i}}{L}V_{C} +\frac{H_{\mathrm{v}}}{C}I_{s}, \end{aligned}$$

and

$$\begin{aligned} Q=-\frac{H_{i}}{L}V_{e}. \end{aligned}$$

Finally, the control law is given by:

$$\begin{aligned} T_R =-Q^{-1} E\left( x \right) +K \hbox {sign} \left( S \right) \end{aligned}$$
(30)

1.2 Parameters of the Buck DC–DC Converter

1.3 How to Plot a Bifurcation Diagram?

Let us consider the state equation:

$$\begin{aligned} \left\{ {\begin{array}{l} \dot{x} =Ax+BV_e \\ x_0 \\ \end{array}} \right. \end{aligned}$$
(31)

The diagram of bifurcation of this system is defined in the following way: One represents \(V_{e}\) in X-coordinate (\(V_{e}\) ranging between 15 and 50 V), and we present in ordinate, the values obtained by the solution of the state equation, after a certain iteration count (400 for example). For each value of \(V_{e}\), the operation is started again a great number of times by choosing each time a random value of the first term \(x_{0}\) (equilibrium values). One thus obtains the bifurcation diagram of our system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadri-Hamida, A. Higher-Order Sliding Mode Control Scheme with an Adaptation Low for Uncertain Power DC–DC Converters. J Control Autom Electr Syst 26, 125–133 (2015). https://doi.org/10.1007/s40313-015-0168-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-015-0168-4

Keywords

Navigation