Skip to main content
Log in

Hardware-in-the-Loop Rendezvous Tests of a Novel Actuators Command Concept

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Integration, test and validation results, in a real-time environment, of a novel concept for spacecraft control are presented in this paper. The proposed method commands simultaneously a group of actuators optimizing a given set of objective functions based on a multiobjective optimization technique. Since close proximity maneuvers play an important role in orbital servicing missions, the entire GNC system has been integrated and tested at a hardware-in-the-loop (HIL) rendezvous and docking simulator known as European Proximity Operations Simulator (EPOS). During the test campaign at EPOS facility, a visual camera has been used to provide the necessary measurements for calculating the relative position with respect to the target satellite during closed-loop simulations. In addition, two different configurations of spacecraft control have been considered in this paper: a thruster reaction control system and a mixed actuators mode which includes thrusters, reaction wheels, and magnetic torqrods. At EPOS, results of HIL closed-loop tests have demonstrated that a safe and stable rendezvous approach can be achieved with the proposed GNC loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AMCM:

: Actuators Multiobjective Command Method

AOCS:

: Attitude and Orbit Control System

CLW:

: Clohessy-Wiltshire coordinate frame

CoM:

: Center of Mass

EPOS:

: European Proximity Operations Simulator

GNC:

: Guidance, Navigation and Control

HIL:

: Hardware-in-the-loop

LEO:

: Low Earth Orbit

MIB:

: Minimum Impulse Bit

OOS:

: On-Orbit Servicing

PID:

: Proportional-Integrative-Derivative

PWPF:

: Pulse Width Pulse Frequency

RCS:

: Reaction Control System

RvD:

: Rendezvous and Docking

SLC:

: Smallest Loss Criterion

A :

: Configuration matrix

F,F a :

: Requested and applied force and torque control vector

\(\dot {h}_{w}\) :

: Flywheel inertial torque, Nm

T c :

: Torque command of the controller, Nm

T m :

: Magnetic control torque, Nm

u :

: Thrust time duration, s

x :

: Decision variable vector

x b :

: Best compromise solution

x :

: Barycenter solution

Z :

: Objective functions vector

δ :

: Nozzle inclination angle, deg

ω w :

: Flywheel angular velocity, rpm

References

  1. Akin, D., Sullivan, B.: A survey of serviceable spacecraft failures. In: AIAA Space 2001 Conference and Exposition, American Institute of Aeronautics and Astronautics, pp. 2001–4540. AIAA (2001)

  2. Basic, M.: On hardware-in-the-loop simulation. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, pp. 3194–3198. IEEE, Seville (2005)

  3. Benninghoff, H., Rems, F., Boge, T.: Development and hardware-in-the-loop test of a guidance, navigation and control system for on-orbit servicing. Acta Astronaut. 102, 67–80 (2014)

    Article  Google Scholar 

  4. Boge, T., Benninghoff, H., Tzschichholz, T.: Hardware-in-the-loop rendezvous simulation using a vision based sensor. In: 8th International ESA Conference on Guidance, Navigation and Control Systems. European Space Agency, ESA, Karlovy (2011)

    Google Scholar 

  5. Boge, T., Benninghoff, H., Zebenay, M., Rems, F.: Using robots for advanced rendezvous and docking simulation. In: Simulation and EGSE facilities for Space Programmes (SESP). SESP, Noordwijk (2012)

    Google Scholar 

  6. Brualdi, R.A.: Introductory Combinatorics, p. 612. Pearson Education, New York (1992)

    MATH  Google Scholar 

  7. Bruno, D.: Contigency mixed actuator controller implementation for the dawn asteroid rendezvous spacecraft. In: AIAA 2012 Conference and Exposition, American Institute of Aeronautics and Astronautics, pp. 2012–5289. AIAA, Pasadena (2012)

    Google Scholar 

  8. Chung, C.A.: Simulation Modeling Handbook: A Practical Approach, p. 574. CRC Press LLC, Washington, D.C. (2004)

    Google Scholar 

  9. Cohon, J.L.: Multiobjective Programming and Planning, p. 333. Dover Publications, Mineola (2003)

    MATH  Google Scholar 

  10. Collette, Y., Siarry, P.: Multiobjective Optimization: Principles and Case Studies, 1st edn. Springer-Verlag, Berlin (2004). 293 p.

    Book  MATH  Google Scholar 

  11. Crawford, B.S.: Configuration design and efficient operation of redundant multi-jet systems. In: AIAA Guidance Control and Flight Mechanics Conference, American Institute of Aeronautics and Astronautics, pp. 69–845. AIAA, Princeton (1969)

    Google Scholar 

  12. Dennehy, C.J.: Spacecraft hybrid (mixed-actuator) attitude control experiences on nasa science missions. In: 9th International ESA Conference on Guidance, Navigation & Control Systems, European Space Agency, pp. 1–16. ESA, Porto (2014)

    Google Scholar 

  13. Ehrgott, M., Gandibleux, X.: Multiple Criteria Optimization. Kluwer Academic Publishers, New York (2003). chapter 8

    MATH  Google Scholar 

  14. Fehse, W.: Automated rendezvous and docking of spacecraft. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  15. Ge, S., Cheng, H.: A comparative design of satellite attitude control system with reaction wheel. In: Proceedings of the first NASA/ESA Conference on Adaptive Hardware and Systems, pp. 359–364. IEEE, Istambul (2006)

    Google Scholar 

  16. Gonnaud, J.L., Pascal, V.: Atv guidance navigation and control for rendezvous with iss. In: Proceedings 4th ESA International Conference on Spacecraft Guidance, Navigation and Control System (ESTEC), pp. 501–510. European Space Agency, ESA, Noordwijk (2000). ESA SP-425

    Google Scholar 

  17. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  18. Jeon, S.W., Jung, S.: Hardware-in-the-loop simulation for the reaction control system using pwm-based limit cycle analysis. IEEE Trans. Control Syst. Technol. 20(2), 538–545 (2012)

    Article  Google Scholar 

  19. Johnson, M.A., Moradi, M.H.: PID Control, p. 543. Springer, London (2005)

    Book  Google Scholar 

  20. Kristiansen, R., Hagen, D.: Modelling of actuator dynamics for spacecraft attitude control. J. Guid. Control Dyn. 32(3), 1022–1025 (2009)

    Article  Google Scholar 

  21. Ley, W., Wittmann, K., Hallmann, W.: Handbook of Space Technology, p. 908. Wiley, United Kingdom (2009)

    Book  Google Scholar 

  22. Ma, O., Flores-Abad, A., Boge, T.: Use of industrial robots for hardware-in-the-loop simulation of satellite rendezvous and docking. Acta Astronaut. 81(1), 335–347 (2012)

    Article  Google Scholar 

  23. Macala, G.A., Lee, A.Y., Wang, E.K.: Feasibility study of two cassini reaction wheel/thruster hybrid controllers. J. Spacecraft Rockets 51(2), 574–585 (2014)

    Article  Google Scholar 

  24. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26(6), 369–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nash, J.F., Jr.: The bargaining problem. Econometrica 18(2), 155–162 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pareto, V.: Manuale de economia politica. Societa Editrice Libraria, New York, translated into English by A. S. Schwier as ”Manual of political economy”, edited by A.S. Schwier and A.N. Page, A.M. Kelley (1992)

  27. Roberts, B.A., Kruk, J.W., Ake, T.B., Englar, T.S., Class, B.F., Rovner, D.M.: Three-axis attitude control with two reaction wheels and magnetic torquer bars. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, American Institute of Aeronautics and Astronautics, pp. 2004–5245. AIAA, Providence (2004)

    Google Scholar 

  28. Rocco, E.M., Souza, M.L.O., Prado, A.F.B.A.: Multi-objective optimization applied to satellite constellations i: Formulation of the smallest loss criterion. In: 54th International Astronautical Congress, American Institute of Aeronautics and Astronautics. AIAA, Bremen (2003)

    Google Scholar 

  29. Rocco, E.M., Souza, M.L.O., Prado, A.F.B.A.: Further application of the smallest loss criterion in the multi-objective optimization of a satellite constellation. In: 56th International Astronautical Congress, American Institute of Aeronautics and Astronautics, pp. 3165–3172. AIAA, Fukuoka (2005)

    Google Scholar 

  30. Rocco, E.M., Souza, M.L.O., Prado, A.F.B.A.: Station keeping of constellations using multiobjective strategies. Math. Probl. Eng. 2013, 1–15 (2013)

    Article  MATH  Google Scholar 

  31. Santos, W.G.: Discrete multiobjective optimization applied to the spacecraft actuators command problem and tested in a hardware-in-the-loop rendezvous simulator. Thesis (doctorate in space engineering and technology). National Institute for Space Research (INPE), São José dos Campos (2015)

    Google Scholar 

  32. Santos, W.G., Rocco, E.M., Boge, T., Benninghoff, H., Rems, F.: Multi-objective optimization applied to real-time command problem of spacecraft thrusters. AIAA J. Spacecraft Rockets 52(5), 1407–1416 (2015a)

    Article  Google Scholar 

  33. Santos, W.G., Rocco, E.M., Boge, T., Rems, F., Benninghoff, H.: Discrete multiobjective optimization methodology applied to the mixed actuators problem and tested in a hardware-in-the-loop rendezvous simulator. In: AIAA Guidance, Navigation and Control Conference, American Institute of Aeronautics and Astronautics. AIAA, Kissimmee (2015b)

    Google Scholar 

  34. Sellmaier, F., Boge, T., Spurmann, J., Gully, S., Rupp, T., Huber, F.: On-orbit servicing missions: Challenges and solutions for spacecraft operations. In: SpaceOps 2010 Conference, American Institute of Aeronautics and Astronautics, pp. 2010–2159. AIAA, Alabama (2010)

    Google Scholar 

  35. Shahrokni, A., Drummond, P., Fua, P.: Texture boundary detection for real-time tracking. In: 8th European Conference on Computer Vision, vol. 3022, pp. 566–577. Springer, Berlin Heidelberg (2004)

    MATH  Google Scholar 

  36. Sidi, M.J.: Spacecraft Dynamics and Control, p. 432. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  37. Silani, E., Lovera, M.: Magnetic spacecraft attitude control: A survey and some new results. Control Eng. Pract. 13(3), 357–371 (2005)

    Article  Google Scholar 

  38. Silva, N., Martel, F., Delpy, P.: Automated transfer vehicle thrusters selection and management function. In: Proceedings of the 6th International ESA Conference on Guidance, Navigation and Control Systems. ESA, Loutraki. ESA SP-606 (2006)

  39. Sobel, I., Feldman, G.: A 3x3 isotropic gradient operator for image processing. In: A talk at the Stanford Artificial Project, pp. 271–272 (1968)

  40. Stoll, E., Letschnik, J., Walter, U., Artigas, J., Kremer, P., Preusche, C., Hirzinger, G.: On-orbit servicing. IEEE Robot. Autom. Mag. 16(4), 29–33 (2009)

    Article  Google Scholar 

  41. Tewari, A.: Atmospheric and space flight dynamics, 1st edn. Birkhauser, Boston (2007). 556 p.

    MATH  Google Scholar 

  42. Tzschichholz, T., Boge, T., Benninghoff, H.: A flexible image processing framework for vision-based navigation using monocular imaging sensors. In: 8th International ESA Conference on Guidance, Navigation & Control Systems, p. 15. Karlovy Vary, Czech Republic (2011)

    Google Scholar 

  43. Tzschichholz, T., Boge, T., Schilling, K.: Relative pose estimation of satellites using pmd-/ccd-sensor data fusion. Acta Astronaut. 109, 25–33 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the CAPES Foundation, Ministry of Education of Brazil, process number BEX 3512/13-4. The authors also wish to thank the German Aerospace Center (DLR) and the National Institute for Space Research (INPE) which provided all the necessary support for the development of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willer Gomes dos Santos.

Additional information

Dedicated to Toralf Boge (in memoriam)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes dos Santos, W., Marconi Rocco, E., Boge, T. et al. Hardware-in-the-Loop Rendezvous Tests of a Novel Actuators Command Concept. J of Astronaut Sci 63, 287–307 (2016). https://doi.org/10.1007/s40295-016-0094-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-016-0094-0

Keywords

Navigation