Skip to main content

Advertisement

Log in

The Continuing Evolution of Molecular Functional Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part II)

  • Leading Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

The present era of precision medicine sees “cancer” as a consequence of molecular derangements occurring at the commencement of the disease process, with morphological changes happening much later in the process of tumourigenesis. Conventional imaging techniques, such as computed tomography (CT), ultrasound (US) and magnetic resonance imaging (MRI) play an integral role in the detection of disease at the macroscopic level. However, molecular functional imaging (MFI) techniques entail the visualisation and quantification of biochemical and physiological processes occurring during tumourigenesis. MFI has the potential to play a key role in heralding the transition from the concept of “one-size-fits-all” treatment to “precision medicine”. Integration of MFI with other fields of tumour biology such as genomics has spawned a novel concept called “radiogenomics”, which could serve as an indispensable tool in translational cancer research. With recent advances in medical image processing, such as texture analysis, deep learning and artificial intelligence, the future seems promising; however, their clinical utility remains unproven at present. Despite the emergence of novel imaging biomarkers, the majority of these require validation before clinical translation is possible. In this two part review, we discuss the systematic collaboration across structural, anatomical and molecular imaging techniques that constitute MFI. Part I reviews positron emission tomography, radiogenomics, AI, and optical imaging, while part II reviews MRI, CT and ultrasound, their current status, and recent advances in the field of precision oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mahajan A, Goh V, Basu S, Vaish R, Weeks AJ, Thakur MH, Cook GJ. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine? Clin Radiol. 2015;70(10):1060–82.

    Article  CAS  PubMed  Google Scholar 

  2. Dhingra VK, Mahajan A, Basu S. Emerging clinical applications of PET based molecular imaging in oncology: the promising future potential for evolving personalized cancer care. Indian J Radiol Imaging. 2015;25(4):332.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mahajan A, Deshpande SS, Thakur MH. Diffusion magnetic resonance imaging: a molecular imaging tool caught between hope, hype and the real world of “personalized oncology”. World J Radiol. 2017;9(6):253.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Momcilovic M, Shackelford DB. Imaging cancer metabolism. Biomol Ther. 2018;26(1):81.

    Article  CAS  Google Scholar 

  5. Tee SS, Keshari KR. Novel approaches to imaging tumor metabolism. Cancer J (Sudbury, Mass). 2015;21(3):165.

    Article  CAS  Google Scholar 

  6. Negendank W. Studies of human tumors by MRS: a review. NMR Biomed. 1992;5(5):303–24.

    Article  CAS  PubMed  Google Scholar 

  7. Nielsen FU, Daugaard P, Bentzen L, Stødkilde-Jørgensen H, Overgaard J, Horsman MR, Maxwell RJ. Effect of changing tumor oxygenation on glycolytic metabolism in a murine C3H mammary carcinoma assessed by in vivo nuclear magnetic resonance spectroscopy. Cancer Res. 2001;61(13):5318–25.

    CAS  PubMed  Google Scholar 

  8. Kurhanewicz J, Bok R, Nelson SJ, Vigneron DB. Current and potential applications of clinical 13C MR spectroscopy. J Nucl Med Off Publ Soc Nucl Med. 2008;49(3):341.

    CAS  Google Scholar 

  9. Leach MO, Verrill M, Glaholm J, Smith TA, Collins DJ, Payne GS, Sharp JC, Ronen SM, McCready VR, Powles TJ, Smith IE. Measurements of human breast cancer using magnetic resonance spectroscopy: a review of clinical measurements and a report of localized 31P measurements of response to treatment. NMR Biomed. 1998;11(7):314–40.

    Article  CAS  PubMed  Google Scholar 

  10. Day SE, Kettunen MI, Cherukuri MK, Mitchell JB, Lizak MJ, Morris HD, Matsumoto S, Koretsky AP, Brindle KM. Detecting response of rat C6 glioma tumors to radiotherapy using hyperpolarized [1-13C] pyruvate and 13C magnetic resonance spectroscopic imaging. Magn Resonance Med. 2011;65(2):557–63.

    Article  CAS  Google Scholar 

  11. Keshari KR, Kurhanewicz J, Bok R, Larson PE, Vigneron DB, Wilson DM. Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging. Proc Natl Acad Sci. 2011;108(46):18606–11.

    Article  CAS  PubMed  Google Scholar 

  12. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chaumeil MM, Larson PE, Yoshihara HA, Danforth OM, Vigneron DB, Nelson SJ, Pieper RO, Phillips JJ, Ronen SM. Non-invasive in vivo assessment of IDH1 mutational status in glioma. Nat Commun. 2013;10(4):2429.

    Article  CAS  Google Scholar 

  14. Mahajan A, Moiyadi AV, Jalali R, Sridhar E. Radiogenomics of glioblastoma: a window into its imaging and molecular variability. Cancer Imaging. 2015;15(1):P14.

    Article  PubMed Central  Google Scholar 

  15. Goldenberg JM, Pagel MD. Assessments of tumor metabolism with CEST MRI. NMR Biomed. 2018;25:e3943.

    Article  Google Scholar 

  16. DeBrosse C, Nanga RP, Bagga P, Nath K, Haris M, Marincola F, Schnall MD, Hariharan H, Reddy R. Lactate chemical exchange saturation transfer (LATEST) imaging in vivo: a biomarker for LDH activity. Sci Rep. 2016;22(6):19517.

    Article  CAS  Google Scholar 

  17. Zhou J, Payen JF, Wilson DA, Traystman RJ, Van Zijl PC. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med. 2003;9(8):1085.

    Article  CAS  PubMed  Google Scholar 

  18. Chen LQ, Pagel MD. Evaluating pH in the extracellular tumor microenvironment using CEST MRI and other imaging methods. Adv Radiol. 2015;2015:206405.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wu B, Warnock G, Zaiss M, Lin C, Chen M, Zhou Z, Mu L, Nanz D, Tuura R, Delso G. An overview of CEST MRI for non-MR physicists. EJNMMI Phys. 2016;3(1):19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wen Z, Hu S, Huang F, Wang X, Guo L, Quan X, Wang S, Zhou J. MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast. NeuroImage. 2010;51(2):616–22.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhou J, Tryggestad E, Wen Z, Lal B, Zhou T, Grossman R, Wang S, Yan K, Fu DX, Ford E, Tyler B. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med. 2011;17(1):130.

    Article  CAS  PubMed  Google Scholar 

  22. Barrett T, Brechbiel M, Bernardo M, Choyke PL. MRI of tumor angiogenesis. J Magn Reson Imaging. 2007;26(2):235–49.

    Article  PubMed  Google Scholar 

  23. Wolf RL, Wang J, Wang S, Melhem ER, O’rourke DM, Judy KD, Detre JA. Grading of CNS neoplasms using continuous arterial spin labeled perfusion MR imaging at 3 Tesla. J Magn Reson Imaging. 2005;22(4):475–82.

    Article  PubMed  Google Scholar 

  24. Moffat BA, Chen M, Kariaapper MS, Hamstra DA, Hall DE, Stojanovska J, Johnson TD, Blaivas M, Kumar M, Chenevert TL, Rehemtulla A. Inhibition of vascular endothelial growth factor (VEGF)-A causes a paradoxical increase in tumor blood flow and up-regulation of VEGF-D. Clin Cancer Res. 2006;12(5):1525–32.

    Article  CAS  PubMed  Google Scholar 

  25. Robinson SP, Howe FA, Griffiths JR. Noninvasive monitoring of carbogen-induced changes in tumor blood flow and oxygenation by functional magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 1995;33(4):855–9.

    Article  CAS  PubMed  Google Scholar 

  26. Gilead A, Meir G, Neeman M. The role of angiogenesis, vascular maturation, regression and stroma infiltration in dormancy and growth of implanted MLS ovarian carcinoma spheroids. Int J Cancer. 2004;108(4):524–31.

    Article  CAS  PubMed  Google Scholar 

  27. Jiang L, Zhao D, Constantinescu A, Mason RP. Comparison of BOLD contrast and Gd-DTPA dynamic contrast-enhanced imaging in rat prostate tumor. Magn Reson Med. 2004;51(5):953–60.

    Article  PubMed  Google Scholar 

  28. Mason RP. BOLD MRI: a tool for predicting tumor therapy outcome based on tumor blood oxygenation and vascular function. Imaging Med. 2009;1(1):11–3.

    Article  Google Scholar 

  29. Padhani AR, Husband JE. Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies. Clin Radiol. 2001;56(8):607–20.

    Article  CAS  PubMed  Google Scholar 

  30. Xiong HQ, Herbst R, Faria SC, Scholz C, Davis D, Jackson EF, Madden T, McConkey D, Hicks M, Hess K, Charnsangavej CA. A phase I surrogate endpoint study of SU6668 in patients with solid tumors. Investig New Drugs. 2004;22(4):459–66.

    Article  CAS  Google Scholar 

  31. Medved M, Karczmar G, Yang C, Dignam J, Gajewski TF, Kindler H, et al. Semiquantitative analysis of dynamic contrast enhanced MRI in cancer patients: variability and changes in tumor tissue over time. J Magn Reson Imaging. 2004;20(1):122–8.

    Article  PubMed  Google Scholar 

  32. Mahajan A. Multifunctional MRI in the body: applications and challenges in oncology. In: Poster session presented at the Annual Scientific Meeting of the Royal Australian and New Zealand College of Radiologists, Perth. 2012.

  33. Turetschek K, Huber S, Floyd E, Helbich T, Roberts TP, Shames DM, Tarlo KS, Wendland MF, Brasch RC. MR imaging characterization of microvessels in experimental breast tumors by using a particulate contrast agent with histopathologic correlation. Radiology. 2001;218(2):562–9.

    Article  CAS  PubMed  Google Scholar 

  34. Bevilacqua MP, Pober JS, Mendrick DL, Cotran RS, Gimbrone MA. Identification of an inducible endothelial-leukocyte adhesion molecule. Proc Natl Acad Sci. 1987;84(24):9238–42.

    Article  CAS  PubMed  Google Scholar 

  35. Kang HW, Torres D, Wald L, Weissleder R, Bogdanov AA Jr. Targeted imaging of human endothelial-specific marker in a model of adoptive cell transfer. Lab Investig. 2006;86(6):599.

    Article  CAS  PubMed  Google Scholar 

  36. Koch AE, Halloran MM, Haskell CJ, Shah MR, Polverini PJ. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1. Nature. 1995;376(6540):517.

    Article  CAS  PubMed  Google Scholar 

  37. Schmieder AH, Winter PM, Caruthers SD, Harris TD, Williams TA, Allen JS, Lacy EK, Zhang H, Scott MJ, Hu G, Robertson JD. Molecular MR imaging of melanoma angiogenesis with ανβ3-targeted paramagnetic nanoparticles. Magn Reson Med Off J Int Soc Magn Reson Med. 2005;53(3):621–7.

    Article  CAS  Google Scholar 

  38. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC. Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nat Med. 1998;4(5):623.

    Article  CAS  PubMed  Google Scholar 

  39. Arbab AS, Yocum GT, Wilson LB, Parwana A, Jordan EK, Kalish H, Frank JA. Comparison of transfection agents in forming complexes with ferumoxides, cell labeling efficiency, and cellular viability. Mol Imaging. 2004;3(1):15353500200403190.

    Article  Google Scholar 

  40. Anderson SA, Glod J, Arbab AS, Noel M, Ashari P, Fine HA, Frank JA. Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood. 2005;105(1):420–5.

    Article  CAS  PubMed  Google Scholar 

  41. Vithanarachchi SM, Allen MJ. Strategies for target-specific contrast agents for magnetic resonance imaging. Curr Mol Imaging. 2012;1(1):12–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Christoforidis GA, Yang M, Kontzialis MS, Larson DG, Abduljalil A, Basso M, Yang W, Ray-Chaudhury A, Heverhagen J, Knopp MV, Barth RF. High resolution ultra high field magnetic resonance imaging of glioma microvascularity and hypoxia using ultra-small particles of iron oxide. Investig Radiol. 2009;44(7):375.

    Article  CAS  Google Scholar 

  43. Troprès I, Lamalle L, Peoc’h M, Farion R, Usson Y, Decorps M, Remy C. In vivo assessment of tumoral angiogenesis. Magn Reson Med Off J Int Soc Magn Reson Med. 2004;51(3):533–41.

    Article  Google Scholar 

  44. Lemasson B, Valable S, Farion R, Krainik A, Rémy C, Barbier EL. In vivo imaging of vessel diameter, size, and density: a comparative study between MRI and histology. Magn Reson Med. 2013;69(1):18–26.

    Article  PubMed  Google Scholar 

  45. Ullrich RT, Jikeli JF, Diedenhofen M, Böhm-Sturm P, Unruh M, Vollmar S, Hoehn M. In-vivo visualization of tumor microvessel density and response to anti-angiogenic treatment by high resolution MRI in mice. PLoS One. 2011;6(5):e19592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Uzzan B, Nicolas P, Cucherat M, Perret GY. Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res. 2004;64(9):2941–55.

    Article  CAS  PubMed  Google Scholar 

  47. Buckley DL, Drew PJ, Mussurakis S, Monson JR, Horsman A. Microvessel density in invasive breast cancer assessed by dynamic Gd-DTPA enhanced MRI. J Magn Reson Imaging. 1997;7(3):461–4.

    Article  CAS  PubMed  Google Scholar 

  48. O’Connor JP, Jackson A, Parker GJ, Roberts C, Jayson GC. Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat Rev Clin Oncol. 2012;9(3):167.

    Article  CAS  PubMed  Google Scholar 

  49. Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J. 1993;64(3):803–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mahajan A, Sable NP, Popat PB, Bhargava P, Gangadhar K, Thakur MH, Arya S. Magnetic resonance imaging of gynecological malignancies: role in personalized management. In: Seminars in ultrasound, CT and MRI, vol. 38, no. 3. Philadelphia: WB Saunders; 2017. pp. 231–68.

    Google Scholar 

  51. Mahajan A, Engineer R, Chopra S, Mahanshetty U, Juvekar SL, Shrivastava SK, Desekar N, Thakur MH. Role of 3T multiparametric-MRI with BOLD hypoxia imaging for diagnosis and post therapy response evaluation of postoperative recurrent cervical cancers. Eur J Radiol Open. 2016;31(3):22–30.

    Article  Google Scholar 

  52. Maxwell RJ, Robinson SP, McIntyre DJ, Griffiths JR, Young WK, Vojnovic B. Simultaneous measurement of gradientecho 1H MR images and PO2 using a fibre-optic oxygen sensor in rodent tumors and their response to carbogen breathing. In: Proceedings of International Society for Magnetic Resonance in Medicine, vol. 3; 1998. p. 1665.

  53. Al-Hallaq HA, River JN, Zamora M, Oikawa H, Karczmar GS. Correlation of magnetic resonance and oxygen microelectrode measurements of carbogen-induced changes in tumor oxygenation 1. Int J Radiat Oncol Biol Phys. 1998;41(1):151–9.

    Article  CAS  PubMed  Google Scholar 

  54. Baudelet C, Gallez B. Current issues in the utility of blood oxygen level dependent MRI for the assessment of modulations in tumor oxygenation. Curr Med Imaging Rev. 2005;1(3):229–43.

    Article  CAS  Google Scholar 

  55. Baudelet C, Gallez B. How does blood oxygen level-dependent (BOLD) contrast correlate with oxygen partial pressure (pO2) inside tumors? Magn Reson Med. 2002;48(6):980–6.

    Article  PubMed  Google Scholar 

  56. Berkowitz BA. Role of dissolved plasma oxygen in hyperoxia-induced contrast. Magn Reson Imaging. 1997;15(1):123–6.

    Article  CAS  PubMed  Google Scholar 

  57. O’Connor JP, Boult JK, Jamin Y, Babur M, Finegan KG, Williams KJ, Little RA, Jackson A, Parker GJ, Reynolds AR, Waterton JC. Oxygen-enhanced MRI accurately identifies, quantifies, and maps tumor hypoxia in preclinical cancer models. Cancer Res. 2016;76(4):787–95.

    Article  CAS  PubMed  Google Scholar 

  58. Little RA, Jamin Y, Boult JK, Naish JH, Watson Y, Cheung S, Holliday KF, Lu H, McHugh DJ, Irlam J, West CM. Mapping hypoxia in renal carcinoma with oxygen-enhanced MRI: comparison with intrinsic susceptibility MRI and pathology. Radiology. 2018;5:171531.

    Google Scholar 

  59. Zhao D, Jiang L, Mason RP. Measuring changes in tumor oxygenation. In: Methods in enzymology, vol. 386. Academic Press; 2004. pp. 378–418.

  60. Miller KL, Hargreaves BA, Lee J, Ress D, Christopher deCharms R, Pauly JM. Functional brain imaging using a blood oxygenation sensitive steady state. Magn Reson Med. 2003;50(4):675–83.

    Article  PubMed  Google Scholar 

  61. Zhou Z, Lu ZR. Gadolinium-based contrast agents for magnetic resonance cancer imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  62. Artemov D. Molecular magnetic resonance imaging with targeted contrast agents. J Cell Biochem. 2003;90(3):518–24.

    Article  CAS  PubMed  Google Scholar 

  63. Swanson SD, Kukowska-Latallo JF, Patri AK, Chen C, Ge S, Cao Z, Kotlyar A, East AT, Baker JR. Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int J Nanomed. 2008;3(2):201.

    Article  CAS  Google Scholar 

  64. Medarova Z, Pham W, Kim Y, Dai G, Moore A. In vivo imaging of tumor response to therapy using a dual-modality imaging strategy. Int J Cancer. 2006;118(11):2796–802.

    Article  CAS  PubMed  Google Scholar 

  65. He Y, Song W, Lei J, Li Z, Cao J, Huang S, Meng J, Xu H, Jin Z, Xue H. Anti-CXCR4 monoclonal antibody conjugated to ultrasmall superparamagnetic iron oxide nanoparticles in an application of MR molecular imaging of pancreatic cancer cell lines. Acta Radiol. 2012;53(9):1049–58.

    Article  PubMed  Google Scholar 

  66. Yang L, Mao H, Cao Z, Wang YA, Peng X, Wang X, et al. Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. Gastroenterology. 2009;136(5):1514–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pu F, Qiao J, Xue S, Yang H, Patel A, Wei L, Hekmatyar K, Salarian M, Grossniklaus HE, Liu ZR, Yang JJ. GRPR-targeted protein contrast agents for molecular imaging of receptor expression in cancers by MRI. Sci Rep. 2015;18(5):16214.

    Article  CAS  Google Scholar 

  68. Hakumäki JM, Brindle KM. Techniques: visualizing apoptosis using nuclear magnetic resonance. Trends Pharmacol Sci. 2003;24(3):146–9.

    Article  CAS  PubMed  Google Scholar 

  69. Adebodun F, Post JF. 31P NMR characterization of cellular metabolism during dexamethasone induced apoptosis in human leukemic cell lines. J Cell Physiol. 1994;158(1):180–6.

    Article  CAS  PubMed  Google Scholar 

  70. Hakumäki JM, Kauppinen RA. 1H NMR visible lipids in the life and death of cells. Trends Biochem Sci. 2000;25(8):357–62.

    Article  PubMed  Google Scholar 

  71. Zhao M, Beauregard DA, Loizou L, Davletov B, Brindle KM. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med. 2001;7(11):1241.

    Article  CAS  PubMed  Google Scholar 

  72. Møller Handrup M, Kjølseth Møller J, Schrøder H. 43rd Congress of the International Society of Paediatric Oncology (SIOP) 2011, Auckland, New Zealand, 28th–30th October, 2011. SIOP Abstracts. Pediatr Blood Cancer. 2011;57(5):705–897.

    Article  Google Scholar 

  73. Basu S, Mahajan A. Psoas muscle metastasis from cervical carcinoma: correlation and comparison of diagnostic features on FDG-PET/CT and diffusion-weighted MRI. World J Radiol. 2014;6(4):125–9. https://doi.org/10.4329/wjr.v6.i4.125 (PubMed PMID: 24778775).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Galbán CJ, Hoff BA, Chenevert TL, Ross BD. Diffusion MRI in early cancer therapeutic response assessment. NMR Biomed. 2017;30(3):e3458.

    Article  Google Scholar 

  75. Kim H, Morgan DE, Zeng H, Grizzle WE, Warram JM, Stockard CR, Wang D, Zinn KR. Breast tumor xenografts: diffusion-weighted MR imaging to assess early therapy with novel apoptosis-inducing anti-DR5 antibody. Radiology. 2008;248(3):844–51.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Shuhendler AJ, Ye D, Brewer KD, Bazalova-Carter M, Lee KH, Kempen P, Wittrup KD, Graves EE, Rutt B, Rao J. Molecular magnetic resonance imaging of tumor response to therapy. Sci Rep. 2015;6(5):14759.

    Article  CAS  Google Scholar 

  77. Longo DL, Dastrù W, Consolino L, Espak M, Arigoni M, Cavallo F, Aime S. Cluster analysis of quantitative parametric maps from DCE-MRI: application in evaluating heterogeneity of tumor response to antiangiogenic treatment. Magn Reson Imaging. 2015;33(6):725–36.

    Article  PubMed  Google Scholar 

  78. Rose CJ, Mills SJ, O’Connor JP, Buonaccorsi GA, Roberts C, Watson Y, Cheung S, Zhao S, Whitcher B, Jackson A, Parker GJ. Quantifying spatial heterogeneity in dynamic contrast-enhanced MRI parameter maps. Magn Reson Med Off J Int Soc Magn Reson Med. 2009;62(2):488–99.

    Article  Google Scholar 

  79. Chaumeil MM, Ozawa T, Park I, Scott K, James CD, Nelson SJ, Ronen SM. Hyperpolarized 13C MR spectroscopic imaging can be used to monitor everolimus treatment in vivo in an orthotopic rodent model of glioblastoma. NeuroImage. 2012;59(1):193–201.

    Article  CAS  PubMed  Google Scholar 

  80. Wang S, Meng M, Zhang X, Wu C, Wang R, Wu J, Sami MU, Xu K. Texture analysis of diffusion weighted imaging for the evaluation of glioma heterogeneity based on different regions of interest. Oncol Lett. 2018;15(5):7297–304.

    PubMed  PubMed Central  Google Scholar 

  81. Nguyen HT, Mortazavi A, Pohar KS, Zynger DL, Wei L, Shah ZK, Jia G, Knopp MV. Quantitative assessment of heterogeneity in bladder tumor MRI diffusivity: can response be predicted prior to neoadjuvant chemotherapy? Bladder Cancer. 2017;3(4):237–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yin Y, Sedlaczek O, Müller B, Warth A, González-Vallinas M, Lahrmann B, Grabe N, Kauczor HU, Breuhahn K, Vignon-Clementel IE, Drasdo D. Tumor cell load and heterogeneity estimation from diffusion-weighted MRI calibrated with histological data: an example from lung cancer. IEEE Trans Med Imaging. 2018;37(1):35–46.

    Article  PubMed  Google Scholar 

  83. Sala E, Mema E, Himoto Y, Veeraraghavan H, Brenton JD, Snyder A, Weigelt B, Vargas HA. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol. 2017;72(1):3.

    Article  CAS  PubMed  Google Scholar 

  84. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Vandsburger MH, Radoul M, Cohen B, Neeman M. MRI reporter genes: applications for imaging of cell survival, proliferation, migration and differentiation. NMR Biomed. 2013;26(7):872–84.

    Article  CAS  PubMed  Google Scholar 

  86. Cohen B, Ziv K, Plaks V, Israely T, Kalchenko V, Harmelin A, Benjamin LE, Neeman M. MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat Med. 2007;13(4):498.

    Article  CAS  PubMed  Google Scholar 

  87. Ziv K, Meir G, Harmelin A, Shimoni E, Klein E, Neeman M. Ferritin as a reporter gene for MRI: chronic liver over expression of h-ferritin during dietary iron supplementation and aging. NMR Biomed. 2010;23(5):523–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Choi SH, Cho HR, Kim HS, Kim YH, Kang KW, Kim H, Moon WK. Imaging and quantification of metastatic melanoma cells in lymph nodes with a ferritin MR reporter in living mice. NMR Biomed. 2012;25(5):737–45.

    Article  PubMed  Google Scholar 

  89. Kim HS, Cho HR, Choi SH, Woo JS, Moon WK. In vivo imaging of tumor transduced with bimodal lentiviral vector encoding human ferritin and green fluorescent protein on a 1.5 T clinical magnetic resonance scanner. Cancer Res. 2010;70(18):7315–24.

    Article  CAS  PubMed  Google Scholar 

  90. Arena F, Singh JB, Gianolio E, Stefanìa R, Aime S. β-Gal gene expression MRI reporter in melanoma tumor cells. Design, synthesis, and in vitro and in vivo testing of a Gd (III) containing probe forming a high relaxivity, melanin-like structure upon β-Gal enzymatic activation. Bioconjug Chem. 2011;22(12):2625–35.

    Article  CAS  PubMed  Google Scholar 

  91. Chuang KH, Wang HE, Cheng TC, Tzou SC, Tseng WL, Hung WC, Tai MH, Chang TK, Roffler SR, Cheng TL. Development of a universal anti–polyethylene glycol reporter gene for noninvasive imaging of PEGylated probes. J Nucl Med. 2010;51(6):933–41.

    Article  CAS  PubMed  Google Scholar 

  92. Schilling F, Ros S, Hu DE, D’Santos P, McGuire S, Mair R, Wright AJ, Mannion E, Franklin RJ, Neves AA, Brindle KM. MRI measurements of reporter-mediated increases in transmembrane water exchange enable detection of a gene reporter. Nat Biotechnol. 2017;35(1):75.

    Article  CAS  PubMed  Google Scholar 

  93. Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson. 2000;143(1):79–87.

    Article  CAS  PubMed  Google Scholar 

  94. Gilad AA, McMahon MT, Walczak P, Winnard PT Jr, Raman V, van Laarhoven HW, Skoglund CM, Bulte JW, van Zijl PC. Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol. 2007;25(2):217.

    Article  CAS  PubMed  Google Scholar 

  95. Iordanova B, Ahrens ET. In vivo magnetic resonance imaging of ferritin-based reporter visualizes native neuroblast migration. NeuroImage. 2012;59(2):1004–12.

    Article  CAS  PubMed  Google Scholar 

  96. Vandsburger MH, Radoul M, Addadi Y, Mpofu S, Cohen B, Eilam R, Neeman M. Ovarian carcinoma: quantitative biexponential MR imaging relaxometry reveals the dynamic recruitment of ferritin-expressing fibroblasts to the angiogenic rim of tumors. Radiology. 2013;268(3):790–801.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Stegman LD, Rehemtulla A, Hamstra DA, Rice DJ, Jonas SJ, Stout KL, Chenevert TL, Ross BD. Diffusion MRI detects early events in the response of a glioma model to the yeast cytosine deaminase gene therapy strategy. Gene Ther. 2000;7(12):1005.

    Article  CAS  PubMed  Google Scholar 

  98. Yang X, Atalar E. MRI-guided gene therapy. FEBS Lett. 2006;580(12):2958–61.

    Article  CAS  PubMed  Google Scholar 

  99. Grange C, Geninatti-Crich S, Esposito G, Alberti D, Tei L, Bussolati B, Aime S, Camussi G. Combined delivery and magnetic resonance imaging of neural cell adhesion molecule-targeted doxorubicin-containing liposomes in experimentally induced Kaposi’s sarcoma. Cancer Res. 2010;9:0008–5472.

    Google Scholar 

  100. Augustin E, Czubek B, Nowicka AM, Kowalczyk A, Stojek Z, Mazerska Z. Improved cytotoxicity and preserved level of cell death induced in colon cancer cells by doxorubicin after its conjugation with iron-oxide magnetic nanoparticles. Toxicol Vitro. 2016;1(33):45–53.

    Article  CAS  Google Scholar 

  101. Kummar S, Gutierrez ME, Chen A, Turkbey IB, Allen D, Horneffer YR, Juwara L, Cao L, Yu Y, Kim YS, Trepel J. Phase I trial of vandetanib and bevacizumab evaluating the VEGF and EGF signal transduction pathways in adults with solid tumours and lymphomas. Eur J Cancer. 2011;47(7):997–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jonker DJ, Rosen LS, Sawyer MB, De Braud F, Wilding G, Sweeney CJ, Jayson GC, McArthur GA, Rustin G, Goss G, Kantor J. A phase I study to determine the safety, pharmacokinetics and pharmacodynamics of a dual VEGFR and FGFR inhibitor, brivanib, in patients with advanced or metastatic solid tumors. Ann Oncol. 2010;22(6):1413–9.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Pollard RE, Garcia TC, Stieger SM, Ferrara KW, Sadlowski AR, Wisner ER. Quantitative evaluation of perfusion and permeability of peripheral tumors using contrast-enhanced computed tomography. Investig Radiol. 2004;39(6):340–9.

    Article  Google Scholar 

  104. Osimani M, Bellini D, Di Cristofano C, Palleschi G, Petrozza V, Carbone A, Laghi A. Perfusion MDCT of prostate cancer: correlation of perfusion CT parameters and immunohistochemical markers of angiogenesis. Am J Roentgenol. 2012;199(5):1042–8.

    Article  Google Scholar 

  105. Ng CS, Zhang Z, Lee SI, Marques HS, Burgers K, Su F, Bauza J, Mannel RS, Walker JL, Huh WK, Rubin SC. CT perfusion as an early biomarker of treatment efficacy in advanced ovarian cancer: an ACRIN and GOG study. Clin Cancer Res. 2017;23(14):3684–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mahajan A, Rao VRK. Perfusion CT: a pictorial review from head to prostate. In: Poster session presented at the Annual Congress of the European Society of Radiology, Vienna. 2010. http://dx.doi.org/10.1594/ecr2010/C-3428

  107. Sripathi S, Mahajan A, Rao V. Variation of CT perfusion (CTP) parameters in different histological types, sizes and tumors with necrosis in patients with lung carcinoma in a tertiary referral hospital in southern India-our initial experience. J Thorac Oncol. 2009;4(9):S744.

    Google Scholar 

  108. Mahajan A, Sripath S, Rao V. Lung perfusion CT: its predictive value in characterizing and differentiating benign vs. malignant cavitary mass. J Thorac Oncol. 2009;4(9):S740.

    Google Scholar 

  109. Mahajan A, Sripath S, Rao V, Vidyasagar MS. Monitoring neo-adjuvant chemotherapy (antiangiogenic therapy) in lung cancer: predictive value of perfusion CT in evaluating response. J Thorac Oncol. 2009;4(9):S739.

    Google Scholar 

  110. Jain R. Perfusion CT imaging of brain tumors: an overview. Am J Neuroradiol. 2011;32(9):1570–7.

    Article  CAS  PubMed  Google Scholar 

  111. Jain R, Narang J, Schultz L, Scarpace L, Saksena S, Brown S, Rock JP, Rosenblum M, Gutierrez J, Mikkelsen T. Permeability estimates in histopathology-proved treatment-induced necrosis using perfusion CT: can these add to other perfusion parameters in differentiating from recurrent/progressive tumors? Am J Neuroradiol. 2011;32(4):658–63.

    Article  CAS  PubMed  Google Scholar 

  112. Goh V, Glynne-Jones R. Perfusion CT imaging of colorectal cancer. Br J Radiol. 2014;87(1034):20130811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol. 2006;79(939):248–53.

    Article  CAS  PubMed  Google Scholar 

  114. Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 2008;8(12):4593–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wahl RL, Kimmel KA, Beierwaltes WH, Carey TE. Radioimmunodiagnosis of human-derived squamous cell carcinoma. Hybridoma. 1987;6(2):111–9.

    Article  CAS  PubMed  Google Scholar 

  116. Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, Ganeshan B, Miles KA, Cook GJ, Goh V. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging. 2012;3(6):573–89.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Yan L, Liu Z, Wang G, Huang Y, Liu Y, Yu Y, Liang C. Angiomyolipoma with minimal fat: differentiation from clear cell renal cell carcinoma and papillary renal cell carcinoma by texture analysis on CT images. Acad Radiol. 2015;22(9):1115–21.

    Article  PubMed  Google Scholar 

  118. Hodgdon T, McInnes MD, Schieda N, Flood TA, Lamb L, Thornhill RE. Can quantitative CT texture analysis be used to differentiate fat-poor renal angiomyolipoma from renal cell carcinoma on unenhanced CT images? Radiology. 2015;276(3):787–96.

    Article  PubMed  Google Scholar 

  119. Miles KA. How to use CT texture analysis for prognostication of non-small cell lung cancer. Cancer Imaging. 2016;16(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA. Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology. 2013;266(1):326–36.

    Article  PubMed  Google Scholar 

  121. Bashir U, Siddique MM, Mclean E, Goh V, Cook GJ. Imaging heterogeneity in lung cancer: techniques, applications, and challenges. Am J Roentgenol. 2016;207(3):534–43.

    Article  Google Scholar 

  122. Ahn SJ, Kim JH, Park SJ, Han JK. Prediction of the therapeutic response after FOLFOX and FOLFIRI treatment for patients with liver metastasis from colorectal cancer using computerized CT texture analysis. Eur J Radiol. 2016;85(10):1867–74.

    Article  PubMed  Google Scholar 

  123. Rao SX, Lambregts DM, Schnerr RS, Beckers RC, Maas M, Albarello F, Riedl RG, Dejong CH, Martens MH, Heijnen LA, Backes WH. CT texture analysis in colorectal liver metastases: a better way than size and volume measurements to assess response to chemotherapy? United Eur Gastroenterol J. 2016;4(2):257–63.

    Article  CAS  Google Scholar 

  124. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;3(5):4006.

    Article  CAS  Google Scholar 

  125. Kang BH, Siegelin MD, Plescia J, Raskett CM, Garlick DS, Dohi T, Lian JB, Stein GS, Languino LR, Altieri DC. Preclinical characterization of mitochondria-targeted small molecule hsp90 inhibitors, gamitrinibs, in advanced prostate cancer. Clin Cancer Res. 2010;16(19):4779–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fushiki H, Kanoh-Azuma T, Katoh M, Kawabata K, Jiang J, Tsuchiya N, Satow A, Tamai Y, Hayakawa Y. Quantification of mouse pulmonary cancer models by microcomputed tomography imaging. Cancer Sci. 2009;100(8):1544–9.

    Article  CAS  PubMed  Google Scholar 

  127. O’Farrell AC, Shnyder SD, Marston G, Coletta PL, Gill JH. Non-invasive molecular imaging for preclinical cancer therapeutic development. Br J Pharmacol. 2013;169(4):719–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sripathi S, Mahajan A. Comparative study evaluating the role of color Doppler sonography and computed tomography in predicting chest wall invasion by lung tumors. J Ultrasound Med. 2013;32(9):1539–46. https://doi.org/10.7863/ultra.32.9.1539.

    Article  PubMed  Google Scholar 

  129. Gessner R, Dayton PA. Advances in molecular imaging with ultrasound. Mol Imaging. 2010;9(3):117–27.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Fleischer AC, Donnelly EF, Grippo RJ, Black AS, Hallahan DE. Quantification of tumor vascularity with contrast-enhanced sonography. J Ultrasound Med. 2004;23(1):37–41.

    Article  PubMed  Google Scholar 

  131. Albrecht T, Urbank A, Mahler M, Bauer A, Dore CJ, Blomley MJ, Cosgrove DO, Schlief R. Prolongation and optimization of Doppler enhancement with a microbubble US contrast agent by using continuous infusion: preliminary experience. Radiology. 1998;207(2):339–47.

    Article  CAS  PubMed  Google Scholar 

  132. Niermann KJ, Fleischer AC, Huamani J, Yankeelov TE, Kim DW, Wilson WD, Hallahan DE. Measuring tumor perfusion in control and treated murine tumors. J Ultrasound Med. 2007;26(6):749–56.

    Article  PubMed  Google Scholar 

  133. Fleischer AC, Lyshchik A, Jones HW, Crispens M, Loveless M, Andreotti RF, Williams PK, Fishman DA. Contrast-enhanced transvaginal sonography of benign versus malignant ovarian masses. J Ultrasound Med. 2008;27(7):1011–8.

    Article  PubMed  Google Scholar 

  134. Lassau N, Chami L, Benatsou B, Peronneau P, Roche A. Dynamic contrast-enhanced ultrasonography (DCE-US) with quantification of tumor perfusion: a new diagnostic tool to evaluate the early effects of antiangiogenic treatment. Eur Radiol Suppl. 2007;17(6):89–98.

    Article  Google Scholar 

  135. Lamuraglia M, Escudier B, Chami L, Schwartz B, Leclère J, Roche A, Lassau N. To predict progression-free survival and overall survival in metastatic renal cancer treated with sorafenib: pilot study using dynamic contrast-enhanced Doppler ultrasound. Eur J Cancer. 2006;42(15):2472–9.

    Article  CAS  PubMed  Google Scholar 

  136. Lee DJ, Lyshchik A, Huamani J, Hallahan DE, Fleischer AC. Relationship between retention of a vascular endothelial growth factor receptor 2 (VEGFR2)-targeted ultrasonographic contrast agent and the level of VEGFR2 expression in an in vivo breast cancer model. J Ultrasound Med. 2008;27(6):855–66.

    Article  PubMed  Google Scholar 

  137. Willmann JK, Paulmurugan R, Chen K, Gheysens O, Rodriguez-Porcel M, Lutz AM, Chen IY, Chen X, Gambhir SS. US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. Radiology. 2008;246(2):508–18.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Korpanty G, Carbon JG, Grayburn PA, Fleming JB, Brekken RA. Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res. 2007;13(1):323–30.

    Article  CAS  PubMed  Google Scholar 

  139. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 1998;279(5349):377–80.

    Article  CAS  PubMed  Google Scholar 

  140. Abou-Elkacem L, Wang H, Chowdhury SM, Kimura RH, Bachawal SV, Gambhir SS, Tian L, Willmann JK. Thy1-targeted microbubbles for ultrasound molecular imaging of pancreatic ductal adenocarcinoma. Clin Cancer Res. 2018;24(7):1574–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Poste G. Bring on the biomarkers. Nature. 2011;469(7329):156.

    Article  CAS  PubMed  Google Scholar 

  142. Goossens N, Nakagawa S, Sun X, Hoshida Y. Cancer biomarker discovery and validation. Transl Cancer Res. 2015;4(3):256.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to Dr. Nilesh Sable and Dr. Anil Keith D’Cruz for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Mahajan.

Ethics declarations

Funding

None.

Conflict of interest

All the authors, Tanvi Vaidya, Archi Agrawal, Shivani Mahajan, M.H. Thakur, and Abhishek Mahajan, declare that they have no conflict of interest.

Ethical approval

Presented cases and procedures involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Additional information

The original version of this article was revised: The name of the second author, which previously read: “Archi Aggarwal” should read as “Archi Agrawal”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaidya, T., Agrawal, A., Mahajan, S. et al. The Continuing Evolution of Molecular Functional Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part II). Mol Diagn Ther 23, 27–51 (2019). https://doi.org/10.1007/s40291-018-0367-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-018-0367-3

Navigation