Skip to main content

Advertisement

Log in

The Continuing Evolution of Molecular Functional Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part I)

  • Leading Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

The present era of precision medicine sees ‘cancer’ as a consequence of molecular derangements occurring at the commencement of the disease process, with morphologic changes happening much later in the process of tumorigenesis. Conventional imaging techniques, such as computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI), play an integral role in the detection of disease at a macroscopic level. However, molecular functional imaging (MFI) techniques entail the visualisation and quantification of biochemical and physiological processes occurring during tumorigenesis, and thus has the potential to play a key role in heralding the transition from the concept of ‘one size fits all’ to ‘precision medicine’. Integration of MFI with other fields of tumour biology such as genomics has spawned a novel concept called ‘radiogenomics’, which could serve as an indispensable tool in translational cancer research. With recent advances in medical image processing, such as texture analysis, deep learning, and artificial intelligence (AI), the future seems promising; however, their clinical utility remains unproven at present. Despite the emergence of novel imaging biomarkers, a majority of these require validation before clinical translation is possible. In this two-part review, we discuss the systematic collaboration across structural, anatomical, and molecular imaging techniques that constitute MFI. Part I reviews positron emission tomography, radiogenomics, AI, and optical imaging, while part II reviews MRI, CT and ultrasound, their current status, and recent advances in the field of precision oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kim EE. Imaging strategies and perspectives in oncology. In: Kim EE, Yang DJ, editors. Targeted molecular imaging in oncology. New York: Springer; 2001. p. 14–8.

    Chapter  Google Scholar 

  2. Dhingra VK, Mahajan A, Basu S. Emerging clinical applications of PET based molecular imaging in oncology: the promising future potential for evolving personalized cancer care. Indian J Radiol Imaging. 2015;25(4):332–41.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mahajan A, Goh V, Basu S, Vaish R, Weeks AJ, Thakur MH, et al. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine? Clin Radiol. 2015;70(10):1060–82.

    Article  CAS  PubMed  Google Scholar 

  4. Mahajan A, Desai S, Kawthalkar AS, Thakur MH. Molecular functional imaging in personalized clinical oncology: the road less traveled. Indian J Med Paediatr Oncol. 2016;37(1):1–3.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJ. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rutman AM, Kuo MD. Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol. 2009;70(2):232–41.

    Article  PubMed  Google Scholar 

  7. Mazurowski MA. Radiogenomics: what it is and why it is important. J Am Coll Radiol. 2015;12(8):862–6.

    Article  PubMed  Google Scholar 

  8. Bai HX, Lee AM, Yang L, Zhang P, Davatzikos C, Maris JM, et al. Imaging genomics in cancer research: limitations and promises. Br J Radiol. 2016;89(1061):20151030.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mahajan A, Moiyadi AV, Jalali R, Sridhar E. Radiogenomics of glioblastoma: a window into its imaging and molecular variability [poster]. Cancer Imaging. 2015;15(Suppl 1):P14. https://doi.org/10.1186/1470-7330-15-S1-P14.

    Article  PubMed Central  Google Scholar 

  10. Seow P, Wong JH, Ahmad Annuar A, Mahajan A, Abdullah NA, Ramli N. Quantitative magnetic resonance imaging and radiogenomic biomarkers for gliomas characterisation: a systematic review. Br J Radiol. 2018;14(91):20170930.

    Article  Google Scholar 

  11. Baid U, Mahajan A, Talbar S, Rane S, Thakur S, Moiyadi A, et al. GBM segmentation with 3D U-Net and survival prediction with radiomics. In: Pre-conference proceedings of the 7th medical image computing and computer-assisted interventions (MICCAI) BraTS Challenge 2018. pp. 28–35. https://www.cbica.upenn.edu/sbia/Spyridon.Bakas/MICCAI_BraTS/MICCAI_BraTS_2018_proceedings_shortPapers.pdf. Accessed 10 Sept 2018.

  12. Zinn PO, Majadan B, Sathyan P, Singh SK, Majumder S, Jolesz FA, et al. Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PloS One. 2011;6(10):e25451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gutman DA, Dunn WD, Grossmann P, Cooper LA, Holder CA, Ligon KL, et al. Somatic mutations associated with MRI-derived volumetric features in glioblastoma. Neuroradiology. 2015;57(12):1227–37.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.

    Article  CAS  Google Scholar 

  15. Dasgupta A, Gupta T, Pungavkar S, Shirsat N, Mahajan A, Janu A, et al. Combined clinical parameters with specific MRI features yield highly accurate prediction of medulloblastoma subtypes: data from 72 patients in a blinded study. Neuro Oncol 2016;18:iii97–iii122.

  16. Pinker K, Shitano F, Sala E, Do RK, Young RJ, Wibmer AG, et al. Background, current role, and potential applications of radiogenomics. J Magn Reson Imaging. 2018;47(3):604–20.

    Article  PubMed  Google Scholar 

  17. Taouli B, Hoshida Y, Kakite S, Chen X, Tan PS, Sun X, et al. Imaging-based surrogate markers of transcriptome subclasses and signatures in hepatocellular carcinoma: preliminary results. Eur Radiol. 2017;27(11):4472–81.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mahajan A, Sable NP, Popat PB, Bhargava P, Gangadhar K, Thakur MH, et al. Magnetic resonance imaging of gynecological malignancies: role in personalized management. Semin Ultrasound CT MR. 2017;38(3):231–68.

    Article  PubMed  Google Scholar 

  19. Andersen EK, Hole KH, Lund KV, Sundfør K, Kristensen GB, Lyng H, et al. Pharmacokinetic parameters derived from dynamic contrast enhanced MRI of cervical cancers predict chemoradiotherapy outcome. Radiother Oncol. 2013;107(1):117–22.

    Article  PubMed  Google Scholar 

  20. Mayo RC, Leung J. Artificial intelligence and deep learning–radiology’s next frontier? Clin Imaging. 2018;1(49):87–8.

    Article  Google Scholar 

  21. Dunet V, Pomoni A, Hottinger A, Nicod-Lalonde M, Prior JO. Performance of 18F-FET versus 18FFDG-PET for the diagnosis and grading of brain tumours: systematic review and meta-analysis. Neuro Oncol. 2016;18(3):426–34. https://doi.org/10.1093/neuonc/nov148.

    Article  CAS  PubMed  Google Scholar 

  22. la Fougere C, Suchorska B, Bartenstein P, Kreth FW, Tonn JC. Molecular imaging of gliomas with PET: opportunities and limitations. Neuro Oncol. 2011;13(8):806–19.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Blanc-Durand P, Van Der Gucht A, Schaefer N, Itti E, Prior JO. Automatic lesion detection and segmentation of 18F-FET PET in gliomas: a full 3D U-Net convolutional neural network study. PloS One. 2018;13(4):e0195798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhuge Y, Krauze AV, Ning H, Cheng JY, Arora BC, Camphausen K, et al. Brain tumour segmentation using holistically nested neural networks in MRI images. Med Phys. 2017;44(10):5234–43.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nogueira MA, Abreu PH, Martins P, Machado P, Duarte H, Santos J. An artificial neural networks approach for assessment treatment response in oncological patients using PET/CT images. BMC Med Imaging. 2017;17(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Trister AD, Buist DS, Lee CI. Will machine learning tip the balance in breast cancer screening? JAMA Oncol. 2017;3(11):1463–4.

    Article  PubMed  Google Scholar 

  27. Sapate SG, Mahajan A, Talbar SN, Sable N, Desai S, Thakur M. Radiomics based detection and characterization of suspicious lesions on full field digital mammograms. Comput Methods Programs Biomed. 2018;1(163):1–20.

    Article  Google Scholar 

  28. Houssami N, Lee CI, Buist DS, Tao D. Artificial intelligence for breast cancer screening: opportunity or hype? Breast. 2017;1(36):31–3.

    Article  Google Scholar 

  29. Serrao EM, Brindle KM. Potential clinical roles for metabolic imaging with hyperpolarized [1-13C] pyruvate. Front Oncol. 2016;11(6):59.

    Google Scholar 

  30. Zhu A, Lee D, Shim H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin Oncol. 2011;38(1):55–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blodgett TM, Meltzer CC, Townsend DW. PET/CT: form and function. Radiology. 2007;242(2):360–85.

    Article  PubMed  Google Scholar 

  32. Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology. 2004;231(2):305–32.

    Article  PubMed  Google Scholar 

  33. El-Galaly TC, Villa D, Gormsen LC, Baech J, Lo A, Cheah CY. FDG-PET/CT in the management of lymphomas: current status and future directions. J Intern Med. 2018;284(4):358–76.

    Article  CAS  PubMed  Google Scholar 

  34. Jadvar H, Colletti PM, Delgado-Bolton R, Esposito G, Krause BJ, Iagaru AH, et al. Appropriate use criteria for FDG PET/CT in restaging and treatment response assessment of malignant disease. J Nucl Med. 2017;58(12):2026–37.

    Article  CAS  PubMed  Google Scholar 

  35. Mahajan A, Cook G. Clinical applications of PET/CT in oncology. In: Khalil MM, editor. Basic science of PET imaging. Cham: Springer Nature; 2017. p. 429–50.

    Chapter  Google Scholar 

  36. Basu S, Mahajan A, Arya S. Multimodality molecular imaging (FDG-PET/CT, US elastography, and DWI-MRI) as complimentary adjunct for enhancing diagnostic confidence in reported intermediate risk category thyroid nodules on Bethesda thyroid cytopathology reporting system. World J Nucl Med 2016;15:130–3.

  37. Basu S, Mahajan A. Discordant and aggressive tumour biology of solitary scalp metastasis amidst widespread skeletal metastases in differentiated thyroid carcinoma: functional radionuclide and MR imaging features and clinical correlates. Indian J Cancer. 2014;51(4):613–4. https://doi.org/10.4103/0019-509X.175309.

  38. Furumoto S, Shinbo R, Iwata R, Ishikawa Y, Yanai K, Yoshioka T, et al. In vitro and in vivo characterization of 2-deoxy-2-18F-fluoro-d-mannose as a tumour-imaging agent for PET. J Nucl Med. 2013;54(8):1354–61.

    Article  CAS  PubMed  Google Scholar 

  39. Arumugam T, Paolillo V, Young D, Wen X, Logsdon CD, De Palatis L, et al. Preliminary evaluation of 1′-[18F] fluoroethyl-β-d-lactose ([18F] FEL) for detection of pancreatic cancer in nude mouse orthotopic xenografts. Nucl Med Biol. 2014;41(10):833–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wuest M, Trayner BJ, Grant TN, Jans HS, Mercer JR, Murray D, et al. Radiopharmacological evaluation of 6-deoxy-6-[18F] fluoro-d-fructose as a radiotracer for PET imaging of GLUT5 in breast cancer. Nucl Med Biol. 2011;38(4):461–75.

    Article  CAS  PubMed  Google Scholar 

  41. Sørensen M, Frisch K, Bender D, Keiding S. The potential use of 2-[18 F] fluoro-2-deoxy-d-galactose as a PET/CT tracer for detection of hepatocellular carcinoma. Eur J Nucl Med Mol Imaging. 2011;38(9):1723–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lewis DY, Soloviev D, Brindle KM. Imaging tumour metabolism using positron emission tomography. Cancer J. 2015;21(2):129–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nawashiro H, Otani N, Shinomiya N, Fukui S, Ooigawa H, Shima K, et al. L-type amino acid transporter 1 as a potential molecular target in human astrocytic tumours. Int J Cancer. 2006;119(3):484–92.

    Article  CAS  PubMed  Google Scholar 

  44. Piroth MD, Pinkawa M, Holy R, Klotz J, Nussen S, Stoffels G, et al. Prognostic value of early [18F] fluoroethyltyrosine positron emission tomography after radiochemotherapy in glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2011;80(1):176–84.

    Article  PubMed  Google Scholar 

  45. Nanni C, Schiavina R, Brunocilla E, Borghesi M, Ambrosini V, Zanoni L, et al. 18F-FACBC compared with 11C-choline PET/CT in patients with biochemical relapse after radical prostatectomy: a prospective study in 28 patients. Clin Genitourin Cancer. 2014;12(2):106–10.

    Article  PubMed  Google Scholar 

  46. Tsuyuguchi N, Terakawa Y, Uda T, Nakajo K, Kanemura Y. Diagnosis of brain tumours using amino acid transport PET imaging with 18F-fluciclovine: a comparative study with L-methyl-11C-methionine PET imaging. Asia Ocean J Nucl Med Biol. 2017;5(2):85–94.

    PubMed  PubMed Central  Google Scholar 

  47. Shoup TM, Olson J, Hoffman JM, Votaw J, Eshima D, Eshima L, et al. Synthesis and evaluation of [18F] 1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumours. J Nucl Med. 1999;40:331–8.

    CAS  PubMed  Google Scholar 

  48. Frosina G. Non-routine tracers for PET imaging of high-grade glioma. Anticancer Res. 2016;36(7):3253–60.

    CAS  PubMed  Google Scholar 

  49. Sasajima T, Ono T, Shimada N, Doi Y, Oka S, Kanagawa M, et al. Trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid (anti-18F-FACBC) is a feasible alternative to 11C-methyl-L-methionine and magnetic resonance imaging for monitoring treatment response in gliomas. Nucl Med Biol. 2013;40(6):808–15.

  50. Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P, Campos C, et al. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Transl Med. 2015;7(274):274ra17.

  51. Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer. 2013 Apr;13(4):227-32.

  52. Pillarsetty N, Punzalan B, Larson SM. 2-18F-Fluoropropionic acid as a PET imaging agent for prostate cancer. J Nucl Med. 2009;50(10):1709–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Umbehr MH, Müntener M, Hany T, Sulser T, Bachmann LM. The role of 11C-choline and 18F-fluorocholine positron emission tomography (PET) and PET/CT in prostate cancer: a systematic review and meta-analysis. Eur Urol. 2013;64(1):106–17.

    Article  PubMed  Google Scholar 

  54. Vogel S, Ulvik A, Meyer K, Ueland PM, Nygård O, Vollset SE, et al. Sarcosine and other metabolites along the choline oxidation pathway in relation to prostate cancer—a large nested case–control study within the JANUS cohort in Norway. Int J Cancer. 2014;134(1):197–206.

    Article  CAS  PubMed  Google Scholar 

  55. Haubner R, Wester HJ. Radiolabeled tracers for imaging of tumour angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des. 2004;10(13):1439–55.

    Article  CAS  PubMed  Google Scholar 

  56. Rüegg C, Alghisi GC. Vascular integrins: therapeutic and imaging targets of tumour angiogenesis. In: Liersch R, Berdel WE, Kessler T, editors. Angiogenesis inhibition. Berlin: Springer; 2010. p. 83–101.

    Chapter  Google Scholar 

  57. Reichardt W, Hu-Lowe D, Torres D, Weissleder R, Bogdanov A Jr. Imaging of VEGF receptor kinase inhibitor-induced antiangiogenic effects in drug-resistant human adenocarcinoma model. Neoplasia. 2005;7(9):847–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li S, Peck-Radosavljevic M, Koller E, Koller F, Kaserer K, Kreil A, et al. Characterization of 123I-vascular endothelial growth factor–binding sites expressed on human tumour cells: possible implication for tumour scintigraphy. Int J Cancer. 2001;91(6):789–96.

    Article  CAS  PubMed  Google Scholar 

  59. Collingridge DR, Carroll VA, Glaser M, Aboagye EO, Osman S, Hutchinson OC, et al. The development of [124I] iodinated-VG76e: a novel tracer for imaging vascular endothelial growth factor in vivo using positron emission tomography. Cancer Res. 2002;62(20):5912–9.

    CAS  PubMed  Google Scholar 

  60. Nagengast WB, de Vries EG, Hospers GA, Mulder NH, de Jong JR, Hollema H, et al. In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumour xenograft. J Nucl Med. 2007;48(8):1313–9.

    Article  CAS  PubMed  Google Scholar 

  61. Song YS, Park HS, Lee BC, Jung JH, Lee HY, Kim SE. Imaging of integrin αvβ3 expression in lung cancers and brain tumours using single-photon emission computed tomography with a novel radiotracer 99mTc-IDA-D-[c (RGDfK)] 2. Cancer Biother Radiopharm. 2017;32(8):288–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mahajan A, Azad GK, Cook GJ. PET imaging of skeletal metastases and its role in personalizing further management. PET Clin. 2016;11(3):305–18. https://doi.org/10.1016/j.cpet.2016.02.003.

    Article  PubMed  Google Scholar 

  63. Miao C, Zhao W, Yuan S, Yu J, Zhao S, Ma L, et al. A novel molecular agent for glioma angiogenesis imaging. Nucl Med Commun. 2017;38(11):919–26.

    Article  CAS  PubMed  Google Scholar 

  64. Fleming IN, Manavaki R, Blower PJ, West C, Williams KJ, Harris AL, et al. Imaging tumour hypoxia with positron emission tomography. Br J Cancer. 2015;112(2):238–50.

    Article  CAS  PubMed  Google Scholar 

  65. Horsman MR, Mortensen LS, Petersen JB, Busk M, Overgaard J. Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol. 2012;9(12):674–87.

    Article  CAS  PubMed  Google Scholar 

  66. Thorwarth D. Functional imaging for radiotherapy treatment planning: current status and future directions—a review. Br J Radiol. 2015;88(1051):20150056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Swanson KR, Chakraborty G, Wang CH, Rockne R, Harpold HL, Muzi M, et al. Complementary but distinct roles for MRI and 18F-fluoromisonidazole PET in the assessment of human glioblastomas. J Nucl Med. 2009;50(1):36–44.

    Article  PubMed  Google Scholar 

  68. Thorwarth D, Eschmann SM, Holzner F, Paulsen F, Alber M. Combined uptake of [18F] FDG and [18F] FMISO correlates with radiation therapy outcome in head-and-neck cancer patients. Radiother Oncol. 2006;80(2):151–6.

    Article  CAS  PubMed  Google Scholar 

  69. Cheng J, Lei L, Xu J, Sun Y, Zhang Y, Wang X, et al. 18F-fluoromisonidazole PET/CT: a potential tool for predicting primary endocrine therapy resistance in breast cancer. J Nucl Med. 2013;54(3):333–40.

    Article  CAS  PubMed  Google Scholar 

  70. Vera P, Bohn P, Edet-Sanson A, Salles A, Hapdey S, Gardin I, et al. Simultaneous positron emission tomography (PET) assessment of metabolism with 18F-fluoro-2-deoxy-d-glucose (FDG), proliferation with 18F-fluoro-thymidine (FLT), and hypoxia with 18fluoro-misonidazole (F-miso) before and during radiotherapy in patients with non-small-cell lung cancer (NSCLC): a pilot study. Radiother Oncol. 2011;98(1):109–16.

    Article  CAS  PubMed  Google Scholar 

  71. Piert M, Machulla HJ, Picchio M, Reischl G, Ziegler S, Kumar P, et al. Hypoxia-specific tumour imaging with 18F-fluoroazomycin arabinoside. J Nucl Med. 2005;46(1):106–13.

    PubMed  Google Scholar 

  72. Lin A, Hahn SM. Hypoxia imaging markers and applications for radiation treatment planning. Semin Nucl Med. 2012;42(5):343–52.

    Article  PubMed  Google Scholar 

  73. Peerlings J, Van De Voorde L, Mitea C, Larue R, Yaromina A, Sandeleanu S, et al. Hypoxia and hypoxia response-associated molecular markers in esophageal cancer: a systematic review. Methods. 2017;130:51–62.

    Article  CAS  PubMed  Google Scholar 

  74. Chen L, Zhang Z, Kolb HC, Walsh JC, Zhang J, Guan Y. 18F-HX4 hypoxia imaging with PET/CT in head and neck cancer: a comparison with 18F-FMISO. Nucl Med Commun. 2012;33(10):1096–102.

    Article  CAS  PubMed  Google Scholar 

  75. Holland JP, Lewis JS, Dehdashti F. Assessing tumor hypoxia by positron emission tomography with Cu-ATSM. Q J Nucl Med Mol Imaging. 2009;53(2):193–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hueting R, Kersemans V, Cornelissen B, Tredwell M, Hussien K, Christlieb M, et al. A comparison of the behavior of 64Cu-acetate and 64Cu-ATSM in vitro and in vivo. J Nucl Med. 2014;55(1):128–34.

    Article  CAS  PubMed  Google Scholar 

  77. Li F, Joergensen JT, Hansen AE, Kjaer A. Kinetic modeling in PET imaging of hypoxia. Am J Nucl Med Mol Imaging. 2014;4(6):490–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Dehdashti F, Picus J, Michalski JM, Dence CS, Siegel BA, Katzenellenbogen JA, et al. Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging. 2005;32(3):344–50.

    Article  PubMed  Google Scholar 

  79. Kiesewetter DO, Kilbourn MR, Landvatter SW, Heiman DF, Katzenellenbogen JA, Welch MJ. Preparation of four fluorine-18-labeled estrogens and their selective uptakes in target tissues of immature rats. J Nucl Med. 1984;25(11):1212–21.

    CAS  PubMed  Google Scholar 

  80. Mortimer JE, Dehdashti F, Siegel BA, Trinkaus K, Katzenellenbogen JA, Welch MJ. Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol. 2001;19(11):2797–803.

    Article  CAS  PubMed  Google Scholar 

  81. Hudis CA. Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med. 2007;357(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  82. Beylergil V, Morris PG, Smith-Jones PM, Modi S, Solit D, Hudis CA, et al. Pilot study of 68 Ga-DOTA-F (ab′) 2-trastuzumab in patients with breast cancer. Nucl Med Commun. 2013;34(12):1157–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kunikowska J, Lewington V, Krolicki L. Optimizing somatostatin receptor imaging in patients with neuroendocrine tumours: the impact of 99mTc-HYNICTOC SPECT/SPECT/CT versus 68 Ga-DOTATATE PET/CT upon clinical management. Clin Nucl Med. 2017;42(12):905–11.

    Article  PubMed  Google Scholar 

  84. Yordanova A, Eppard E, Kürpig S, Bundschuh RA, Schönberger S, Gonzalez-Carmona M, et al. Theranostics in nuclear medicine practice. Onco Targets Ther. 2017;10:4821–8.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Prasad V, Steffen IG, Pavel M, Denecke T, Tischer E, Apostolopoulou K, et al. Somatostatin receptor PET/CT in restaging of typical and atypical lung carcinoids. EJNMMI Res. 2015;5(1):53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee ST, Kulkarni HR, Singh A, Baum RP. Theranostics of neuroendocrine tumours. Visc Med. 2017;33(5):358–66.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Giovacchini G, Giovannini E, Riondato M, Ciarmiello A. PET/CT with (68)Ga-PSMA in prostate cancer: radiopharmaceutical background and clinical implications. Curr Radiopharm. 2018;11(1):4–13. https://doi.org/10.2174/1874471010666171101121803.

    Article  CAS  PubMed  Google Scholar 

  88. Sanchez-Crespo A, Jussing E, Björklund AC, Tamm KP. Hallmarks in prostate cancer imaging with Ga68-PSMA-11-PET/CT with reference to detection limits and quantitative properties. EJNMMI Res. 2018;8(1):27.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gupta M, Choudhury PS, Rawal S, Gupta G. Incremental value of 68-gallium-prostate-specific membrane antigen positron emission tomography/computed tomography in patients with abnormal prostate-specific antigen and benign transrectal ultrasound biopsy. Urol Ann. 2018;10(2):150–3. https://doi.org/10.4103/UA.UA_55_17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ceci F, Castellucci P, Fanti S. Current application and future perspectives of PSMA PET imaging in prostate cancer. Q J Nucl Med Mol Imaging. Epub 2018 Mar 8. https://doi.org/10.23736/S1824-4785.18.03059-5.

  91. Oldan JD, Hawkins AS, Chin BB. 18F Sodium fluoride PET/CT in patients with prostate cancer: quantification of normal tissues, benign degenerative lesions, and malignant lesions. World J Nucl Med. 2016;15(2):102–8.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sun B, Halmos G, Schally AV, Wang X, Martinez M. Presence of receptors for bombesin/gastrin-releasing peptide and mRNA for three receptor subtypes in human prostate cancers. Prostate. 2000;42(4):295–303.

    Article  CAS  PubMed  Google Scholar 

  93. Velikyan I, Sundberg ÅL, Lindhe Ö, Höglund AU, Eriksson O, Werner E, et al. Preparation and evaluation of 68Ga-DOTA-hEGF for visualization of EGFR expression in malignant tumours. J Nucl Med. 2005;46(11):1881–8.

    CAS  PubMed  Google Scholar 

  94. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al. Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F] Galacto-RGD. PLoS Med. 2005;2(3):e70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nielsen MJ, Rasmussen MR, Andersen CB, Nexø E, Moestrup SK. Vitamin B12 transport from food to the body’s cells—a sophisticated, multistep pathway. Nat Rev Gastroenterol Hepatol. 2012;9(6):345–54.

    Article  CAS  PubMed  Google Scholar 

  96. Sah BR, Schibli R, Waibel R, von Boehmer L, Bläuenstein P, Nexo E, et al. Tumour imaging in patients with advanced tumours using a new 99mTc-radiolabeled vitamin B12 derivative. J Nucl Med. 2014;55(1):43–9.

    Article  CAS  PubMed  Google Scholar 

  97. Kuda-Wedagedara AN, Workinger JL, Nexo E, Doyle RP, Viola-Villegas N. 89Zr-cobalamin PET tracer: synthesis, cellular uptake, and use for tumour imaging. ACS Omega. 2017;2(10):6314–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Blankenberg FG. In vivo detection of apoptosis. J Nucl Med. 2008;49(Suppl 2):81S–95S.

    Article  CAS  PubMed  Google Scholar 

  99. Brindle K. New approaches for imaging tumour responses to treatment. Nat Rev Cancer. 2008;8(2):94.

    Article  CAS  PubMed  Google Scholar 

  100. Neves AA, Brindle KM. Imaging cell death. J Nucl Med. 2014;55(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  101. Challapalli A, Kenny LM, Hallett WA, Kozlowski K, Tomasi G, Gudi M, et al. 18F-ICMT-11, a caspase-3–specific PET tracer for apoptosis: biodistribution and radiation dosimetry. J Nucl Med. 2013;54(9):1551–6.

    Article  CAS  PubMed  Google Scholar 

  102. Tait JF. Imaging of apoptosis. J Nucl Med. 2008;49(10):1573–6.

    Article  PubMed  Google Scholar 

  103. Kartachova MS, Olmos RA, Haas RL, Hoebers FJ, van Herk M, Verheij M. 99mTc-HYNIC-rh-annexin-V scintigraphy: visual and quantitative evaluation of early treatment-induced apoptosis to predict treatment outcome. Nucl Med Commun. 2008;29(1):39–44.

    Article  PubMed  Google Scholar 

  104. Qin H, Zhang MR, Xie L, Hou Y, Hua Z, Hu M, et al. PET imaging of apoptosis in tumour-bearing mice and rabbits after paclitaxel treatment with 18F-Labeled recombinant human His10-annexin V. Am J Nucl Med Mol Imaging. 2015;5(1):27–37.

    CAS  PubMed  Google Scholar 

  105. Wang K, Purushotham S, Lee JY, Na MH, Park H, Oh SJ, et al. In vivo imaging of tumour apoptosis using histone H1-targeting peptide. J Control Release. 2010;148(3):283–91.

    Article  CAS  PubMed  Google Scholar 

  106. Zeng W, Wang X, Xu P, Liu G, Eden HS, Chen X. Molecular imaging of apoptosis: from micro to macro. Theranostics. 2015;5(6):559–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Su H, Chen G, Gangadharmath U, Gomez LF, Liang Q, Mu F, et al. Evaluation of [18 F]-CP18 as a PET imaging tracer for apoptosis. Mol Imaging Biol. 2013;15(6):739–47.

    Article  PubMed  Google Scholar 

  108. Xia CF, Chen G, Gangadharmath U, Gomez LF, Liang Q, Mu F, et al. In vitro and in vivo evaluation of the caspase-3 substrate-based radiotracer [18 F]-CP18 for PET imaging of apoptosis in tumours. Mol Imaging Biol. 2013;15(6):748–57.

    Article  PubMed  Google Scholar 

  109. Shirvan A, Reshef A, Allen A, Fenig E, Steinmetz A, Groshar D, et al. Apoptosis imaging with PET-18F-ML-10 for early assessment of response of brain metastases to radiotherapy [abstract]. J Nucl Med. 2009;50(Suppl 2):453.

    Google Scholar 

  110. Neves AA, Xie B, Fawcett S, Alam IS, Witney TH, de Backer MM, et al. Rapid imaging of tumour cell death in vivo using the C2A domain of Synaptotagmin-I. J Nucl Med. 2017;58(6):881–7.

    Article  CAS  PubMed  Google Scholar 

  111. Xie B, Tomaszewski MR, Neves A, Ros S, Hu DE, McGuire S, et al. Optoacoustic detection of early therapy-induced tumour cell death using a targeted imaging agent. Clin Cancer Res. 2017;23(22):6893–903.

    Article  CAS  PubMed  Google Scholar 

  112. Nguyen QD, Challapalli A, Smith G, Fortt R, Aboagye EO. Imaging apoptosis with positron emission tomography: ‘bench to bedside’ development of the caspase-3/7 specific radiotracer [18F] ICMT-11. Eur J Cancer. 2012;48(4):432–40.

    Article  CAS  PubMed  Google Scholar 

  113. Blasberg R. PET imaging of gene expression. Eur J Cancer. 2002;38(16):2137–46.

    Article  CAS  PubMed  Google Scholar 

  114. Dewanjee MK, Ghafouripour AK, Kapadvanjwala M, Dewanjee S, Serafini AN, Lopez DM, et al. Noninvasive imaging of c-myc oncogene messenger RNA with indium-111-antisense probes in a mammary tumour-bearing mouse model. J Nucl Med. 1994;35(6):1054–61.

    CAS  PubMed  Google Scholar 

  115. Tavitian B, Terrazzino S, Kühnast B, Marzabal S, Stettler O, Dollé F, et al. In vivo imaging of oligonucleotides with positron emission tomography. Nat Med. 1998;4(4):467–71.

    Article  CAS  PubMed  Google Scholar 

  116. Hajitou A, Trepel M, Lilley CE, Soghomonyan S, Alauddin MM, Marini FC, et al. A hybrid vector for ligand-directed tumour targeting and molecular imaging. Cell. 2006;125(2):385–98.

    Article  CAS  PubMed  Google Scholar 

  117. Yamamoto Y, Ono Y, Aga F, Kawai N, Kudomi N, Nishiyama Y. Correlation of 18F-FLT uptake with tumour grade and Ki-67 immunohistochemistry in patients with newly diagnosed and recurrent gliomas. J Nucl Med. 2012;53(12):1911–5.

    Article  CAS  PubMed  Google Scholar 

  118. Bading JR, Shields AF. Imaging of cell proliferation: status and prospects. J Nucl Med. 2008;49(Suppl 2):64S–80S.

    Article  CAS  PubMed  Google Scholar 

  119. Barrio JR, Satyamurthy N, Huang SC, Keen RE, Nissenson CH, Hoffman JM, et al. 3-(2’-[18F] fluoroethyl) spiperone: in vivo biochemical and kinetic characterization in rodents, nonhuman primates, and humans. J Cereb Blood Flow Metab. 1989;9(6):830–9.

    Article  CAS  PubMed  Google Scholar 

  120. Hemminki A, Belousova N, Zinn KR, Liu B, Wang M, Chaudhuri TR, et al. An adenovirus with enhanced infectivity mediates molecular chemotherapy of ovarian cancer cells and allows imaging of gene expression. Mol Ther. 2001;4(3):223–31.

    Article  CAS  PubMed  Google Scholar 

  121. Merritt JA, Roth JA, Logothetis CJ. Clinical evaluation of adenoviral-mediated p53 gene transfer: review of INGN 201 studies. Semin Oncol. 2001;28:105–14.

    Article  CAS  PubMed  Google Scholar 

  122. Ponomarev V, Doubrovin M, Lyddane C, Beresten T, Balatoni J, Bornman W, et al. Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia. 2001;3(6):480–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Groot-Wassink T, Aboagye EO, Wang Y, Lemoine NR, Keith WN, Vassaux G. Noninvasive imaging of the transcriptional activities of human telomerase promoter fragments in mice. Cancer Res. 2004;64(14):4906–11.

    Article  CAS  PubMed  Google Scholar 

  124. Slade RL, Pisaneschi F, Nguyen QD, Smith G, Carroll L, Beckley A, et al. Identification of ABC transporter interaction of a novel cyanoquinoline radiotracer and implications for tumour imaging by positron emission tomography. PloS One. 2016;11(8):e0161427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Czernin J, Weber WA, Herschman HR. Molecular imaging in the development of cancer therapeutics. Annu Rev Med. 2006;18(57):99–118.

    Article  CAS  Google Scholar 

  126. Bhattacharyya S. Application of positron emission tomography in drug development. Biochem Pharmacol (Los Angel). 2012;8(1):e128. https://doi.org/10.4172/2167-0501.1000e128.

    Article  Google Scholar 

  127. Liao GJ, Clark AS, Schubert EK, Mankoff DA. 18F-Fluoroestradiol PET: current status and potential future clinical applications. J Nucl Med. 2016;57(8):1269–75.

    Article  CAS  PubMed  Google Scholar 

  128. Ballard P, Yates JW, Yang Z, Kim DW, Yang JC, Cantarini M, et al. Preclinical comparison of osimertinib with other EGFR-TKIs in EGFR-mutant NSCLC brain metastases models, and early evidence of clinical brain metastases activity. Clin Cancer Res. 2016;22:5130–40.

    Article  CAS  PubMed  Google Scholar 

  129. Saleem A, Brown GD, Brady F, Aboagye EO, Osman S, Luthra SK, et al. Metabolic activation of temozolomide measured in vivo using positron emission tomography. Cancer Res. 2003;63:2409–15.

    CAS  PubMed  Google Scholar 

  130. Ginos JZ, Cooper AJ, Dhawan V, Lai JC, Strother SC, Alcock N, et al. [13 N] cisplatin PET to assess pharmacokinetics of intra-arterial versus intravenous chemotherapy for malignant brain tumors. J Nucl Med. 1987;28(12):1844–52.

    CAS  PubMed  Google Scholar 

  131. Dimitrakopoulou-Strauss A, Strauss LG, Schlag P, Hohenberger P. Fluorine-18-fluorouracil to predict therapy response in liver metastases from colorectal carcinoma. J Nucl Med. 1998;39(7):1197.

    CAS  PubMed  Google Scholar 

  132. Waaijer SJ, Kok IC, Eisses B, Schröder CP, Jalving M, Brouwers AH, et al. Molecular imaging in cancer drug development. J Nucl Med. 2018;59(5):726–32.

    Article  CAS  PubMed  Google Scholar 

  133. Edmonds CE, Makvandi M, Lieberman BP, Xu K, Zeng C, Li S, et al. (18F)FluorThanatrace uptake as a marker of PARP1 expression and activity in breast cancer. Am J Nucl Med Mol Imaging. 2016;6:94–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Beattie BJ, Smith-Jones PM, Jhanwar YS, Schöder H, Schmidtlein CR, Morris MJ, et al. Pharmacokinetic assessment of the uptake of 16β-18F-fluoro-5α-dihydrotestosterone (FDHT) in prostate tumours as measured by PET. J Nucl Med. 2010;51:183–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Stroobants S, Goeminne J, Seegers M, Dimitrijevic S, Dupont P, Nuyts J, et al. 18FDG-positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec®). Eur J Cancer. 2003;39(14):2012–20.

    Article  CAS  PubMed  Google Scholar 

  136. Fass L. Imaging and cancer: a review. Mol Oncol. 2008;2(2):115–52.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. Quantifying tumour heterogeneity in 18 F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40(1):133–40.

    Article  PubMed  Google Scholar 

  138. Ha S, Park S, Bang JI, Kim EK, Lee HY. Metabolic radiomics for pretreatment 18 F-FDG PET/CT to characterize locally advanced breast cancer: histopathologic characteristics, response to neoadjuvant chemotherapy, and prognosis. Sci Rep. 2017;7(1):1556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cook GJ, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et al. Are pretreatment 18F-FDG PET tumour textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy. J Nucl Med. 2013;54(1):19–26.

    Article  PubMed  Google Scholar 

  140. Lucia F, Visvikis D, Desseroit MC, Miranda O, Malhaire JP, Robin P, et al. Prediction of outcome using pretreatment 18 F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging. 2018;45(5):768–86.

    Article  PubMed  Google Scholar 

  141. Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur J Nucl Med Mol Imaging. 2017;44(1):151–65.

    Article  PubMed  Google Scholar 

  142. Lambin P, Leijenaar RT, Deist TM, Peerlings J, de Jong EE, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749–62.

    Article  PubMed  Google Scholar 

  143. Castellano G, Bonilha L, Li LM, Cendes F. Texture analysis of medical images. Clin Radiol. 2004;59(12):1061–9.

    Article  CAS  PubMed  Google Scholar 

  144. Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D. Reproducibility of tumour uptake heterogeneity characterisation through textural feature analysis in 18F-FDG PET. J Nucl Med. 2012;53:693–700.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Sokolov K, Follen M, Richards-Kortum R. Optical spectroscopy for detection of neoplasia. Curr Opin Chem Biol. 2002;6(5):651–8.

    Article  CAS  PubMed  Google Scholar 

  146. Solomon M, Liu Y, Berezin MY, Achilefu S. Optical imaging in cancer research: basic principles, tumour detection, and therapeutic monitoring. Med Princ Pract. 2011;20(5):397–415.

    Article  PubMed  Google Scholar 

  147. Choe R, Corlu A, Lee K, Durduran T, Konecky SD, Grosicka-Koptyra M, et al. Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI. Med Phys. 2005;32(4):1128–39.

    Article  PubMed  Google Scholar 

  148. Galanzha EI, Shashkov EV, Spring PM, Suen JY, Zharov VP. In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Res. 2009;69(20):7926–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Koyama Y, Hama Y, Urano Y, Nguyen DM, Choyke PL, Kobayashi H. Spectral fluorescence molecular imaging of lung metastases targeting HER2/neu. Clin Cancer Res. 2007;13(10):2936–45.

    Article  CAS  PubMed  Google Scholar 

  150. Licha K, Hessenius C, Becker A, Henklein P, Bauer M, Wisniewski S, et al. Synthesis, characterization, and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes. Bioconjug Chem. 2001;12(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  151. Tummers QR, Hoogstins CE, Gaarenstroom KN, de Kroon CD, van Poelgeest MI, Vuyk J, et al. Intraoperative imaging of folate receptor alpha positive ovarian and breast cancer using the tumor specific agent EC17. Oncotarget. 2016;7(22):32144–55.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Kossatz S, Brand C, Gutiontov S, Liu JT, Lee NY, Gönen M, et al. Detection and delineation of oral cancer with a PARP1 targeted optical imaging agent. Sci Rep. 2016;22(6):21371.

    Article  CAS  Google Scholar 

  153. Bremer C, Tung CH, Weissleder R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med. 2001;7(6):743–8.

    Article  CAS  PubMed  Google Scholar 

  154. Bremer C, Bredow S, Mahmood U, Weissleder R, Tung CH. Optical imaging of matrix metalloproteinase-2 activity in tumours: feasibility study in a mouse model. Radiology. 2001;221(2):523–9.

    Article  CAS  PubMed  Google Scholar 

  155. Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr. In vivo imaging of tumours with protease-activated near-infrared fluorescent probes. Nat Biotechnol. 1999;17(4):375–8.

    Article  CAS  PubMed  Google Scholar 

  156. Martelli C, Dico AL, Diceglie C, Lucignani G, Ottobrini L. Optical imaging probes in oncology. Oncotarget. 2016;7(30):48753.

    PubMed  Google Scholar 

  157. Schellenberger EA, Bogdanov A Jr, Petrovsky A, Ntziachristos V, Weissleder R, Josephson L. Optical imaging of apoptosis as a biomarker of tumour response to chemotherapy. Neoplasia. 2003;5(3):187–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Burggraaf J, Kamerling IM, Gordon PB, Schrier L, De Kam ML, Kales AJ, et al. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nat Med. 2015;21(8):955–61.

    Article  CAS  PubMed  Google Scholar 

  159. Samkoe KS, Gunn JR, Marra K, Hull SM, Moodie KL, Feldwisch J, et al. Toxicity and pharmacokinetic profile for single-dose injection of ABY-029: a fluorescent anti-EGFR synthetic Affibody molecule for human use. Mol Imaging Biol. 2017;19(4):512–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rosenthal EL, Warram JM, de Boer E, Chung TK, Korb ML, Brandwein-Gensler M, et al. Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res. 2015;21(16):3658–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Joshi BP, Wang TD. Targeted optical imaging agents in cancer: focus on clinical applications. Contrast Media Mol Imaging. 2018;2018:2015237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ruggiero A, Holland JP, Lewis JS, Grimm J. Cerenkov luminescence imaging of medical isotopes. J Nucl Med. 2010;51(7):1123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Thorek DL, Riedl CC, Grimm J. Clinical Cerenkov luminescence imaging of 18F-FDG. J Nucl Med. 2014;55(1):95–8.

    Article  CAS  PubMed  Google Scholar 

  164. Tonn JC, Stummer W. Fluorescence-guided resection of malignant gliomas using 5-aminolevulinic acid: practical use, risks, and pitfalls. Clin Neurosurg. 2008;55(3):20–6.

    PubMed  Google Scholar 

  165. Sievert KD, Kruck S. Hexyl aminolevulinate fluorescence cystoscopy in bladder cancer. Expert Rev Anticancer Ther. 2009;9(8):1055–63.

    Article  CAS  PubMed  Google Scholar 

  166. Walsh AJ, Cook RS, Sanders ME, Aurisicchio L, Ciliberto G, Arteaga CL, et al. Quantitative optical imaging of primary tumour organoid metabolism predicts drug response in breast cancer. Cancer Res. 2014;74(18):5184–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Harada H, Kizaka-Kondoh S, Hiraoka M. Optical imaging of tumor hypoxia and evaluation of efficacy of a hypoxia-targeting drug in living animals. Mol Imaging. 2005;4(3):182–93.

    Article  PubMed  Google Scholar 

  168. Wang K, Chi C, Hu Z, Liu M, Hui H, Shang W, et al. Optical molecular imaging frontiers in oncology: the pursuit of accuracy and sensitivity. Engineering. 2015;1(3):309–23.

    Article  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to Dr Nilesh Sable and Dr Anil Keith D’Cruz for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Mahajan.

Ethics declarations

Funding

No funding was received for the preparation of this article.

Conflict of Interest

Tanvi Vaidya, Archi Agrawal, Shivani Mahajan, Meenakshi H. Thakur and Abhishek Mahajan declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaidya, T., Agrawal, A., Mahajan, S. et al. The Continuing Evolution of Molecular Functional Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part I). Mol Diagn Ther 23, 1–26 (2019). https://doi.org/10.1007/s40291-018-0366-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-018-0366-4

Navigation