Skip to main content
Log in

MicroRNA-196a2 Biomarker and Targetome Network Analysis in Solid Tumors

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Introduction

MicroRNAs (miRNAs) have been linked to cancer development and progression. The molecular mechanisms underlying the genetic associations of the miRNA single nucleotide polymorphism with cancer vary by cancer site. As there are no previous studies on the miR-196a2 variant or expression in any type of cancer among our population, we aimed to determine the expression profile of mature miR-196a2 in various types of solid tumors and to analyze the impact of its polymorphism (rs11614913; C/T) on the expression levels.

Materials and Methods

The study included 230 cancer patients (including 17 types of cancer), 26 patients with pre-cancer lesions, and 100 unrelated controls. Archived formalin-fixed, paraffin-embedded specimens (n = 197) were available for both miRNA expression analysis and single nucleotide polymorphism identification. Venous blood was collected from 59 histologically confirmed sporadic cancer patients and the study controls for single nucleotide polymorphism identification. Real-time polymerase chain reaction analysis was performed for allelic discrimination and relative quantification of miR-196a2 in the study samples. In silico target gene prediction and network analysis was performed.

Results

We found that individuals with the T variant were associated with cancer risk under all genetic association models, especially in colorectal, esophageal, skin, lung, thyroid, and renal cancer. Overall and stratified analysis showed miR-196a2 over-expression in most of the current malignant tumor samples relative to their corresponding cancer-free tissues. Carriers of the C allele had significantly higher expression levels of miR-196a2. Correlation with the clinicopathological features of cancer showed organ-specific effects. Gene enrichment analysis of predicted and validated targets speculated the putative role of miR-196a2 in cancer-associated biology.

Conclusions

We highlighted cancer-type specific expression profiles of miR-196a2, which was correlated with the clinicopathological features in various types of cancer. Taken together, our results suggest that the miRNA signature could have promising diagnostic and prognostic significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Leidner R, Li L, Thompson C. Dampening enthusiasm for circulating microRNA in breast cancer. PLoS One. 2013;8:e57841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nouraee N, Van Roosbroeck K, Vasei M, Semnani S, Samaei N. Expression, tissue distribution and function of miR-21 in esophageal squamous cell carcinoma. PLoS One. 2013;8:e73009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gong J, Zhang JP, Li B, Zeng C, You K, Chen MX, et al. MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene. 2013;32:3071–9.

    Article  CAS  PubMed  Google Scholar 

  4. Tao T, Chen S, Xu B, Liu C, Wang Y, Huang Y, et al. Association between hsa-miR-34b/c rs4938723 T>C promoter polymorphism and cancer risk: a meta-analysis based on 6,036 cases and 6,204 controls. Chin J Cancer Res. 2014;26:315–22.

    PubMed  PubMed Central  Google Scholar 

  5. Chu YH, Hsieh MJ, Chiou HL, Liou YS, Yang CC, Yang SF, et al. MicroRNA gene polymorphisms and environmental factors increase patient susceptibility to hepatocellular carcinoma. PLoS One. 2014;9:e89930.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Tanzer A, Amemiya CT, Kim CB, Stadler PF. Evolution of microRNAs located within Hox gene clusters. J Exp Zool B Mol Dev Evol. 2005;304:75–85.

    Article  PubMed  CAS  Google Scholar 

  7. Chen C, Zhang Y, Zhang L, Weakley SM, Yao Q. MicroRNA-196: critical roles and clinical applications in development and cancer. J Cell Mol Med. 2011;15:14–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hou T, Ou J, Zhao X, Huang X, Huang Y, Zhang Y. MicroRNA-196a promotes cervical cancer proliferation through the regulation of FOXO1 and p27Kip1. Br J Cancer. 2014;110:1260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun M, Liu XH, Li JH, et al. MiR-196a is upregulated in gastric cancer and promotes cell proliferation by downregulating p27 (kip1). Mol Cancer Ther. 2012;11:842–52.

    Article  CAS  PubMed  Google Scholar 

  10. Chen H, Sun LY, Chen LL, Zheng HQ, Zhang QF. A variant in microRNA-196a2 is not associated with susceptibility to and progression of colorectal cancer in Chinese. Intern Med J. 2012;42:e115–9.

    Article  CAS  PubMed  Google Scholar 

  11. Xue Y, Abou Tayoun AN, Abo KM, et al. MicroRNAs as diagnostic markers for pancreatic ductal adenocarcinoma and its precursor, pancreatic intraepithelial neoplasm. Cancer Genet. 2013;206:217–21.

    Article  CAS  PubMed  Google Scholar 

  12. Shang Y, Wang LQ, Guo QY, Shi TL. MicroRNA-196a overexpression promotes cell proliferation and inhibits cell apoptosis through PTEN/Akt/FOXO1 pathway. Int J Clin Exp Pathol. 2015;8:2461–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang N, Li Y, Zhu LJ, et al. A functional polymorphism rs11614913 in microRNA-196a2 is associated with an increased risk of colorectal cancer, although not with tumor stage and grade. Biomed Rep. 2013;1:737–42.

    PubMed  PubMed Central  Google Scholar 

  14. Wang J, Wang Q, Liu H, Hu B, Zhou W, Cheng Y. MicroRNA expression and its implication for the diagnosis and therapeutic strategies of gastric cancer. Cancer Lett. 2010;297:137–43.

    Article  CAS  PubMed  Google Scholar 

  15. Yuan Z, Zeng X, Yang D, Wang W, Liu Z. Effects of common polymorphism rs11614913 in hsa-miR-196a2 on lung cancer risk. PLoS One. 2013;8:e61047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hrdlickova B, de Almeida RC, Borek Z, Withoff S. Genetic variation in the non-coding genome: involvement of micro-RNAs and long non-coding RNAs in disease. Biochim Biophys Acta. 2014;1842:1910–22.

    Article  CAS  PubMed  Google Scholar 

  17. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A comprehensive review of genetic association studies. Genet Med. 2002;4:45–61.

    Article  CAS  PubMed  Google Scholar 

  18. Davis BN, Hata A. Regulation of microRNA biogenesis: a miRiad of mechanisms. Cell Commun Signal. 2009;7:18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Guan Y, Mizoguchi M, Yoshimoto K, Hata N, Shono T, Suzuki SO, et al. MiRNA-196 is upregulated in glioblastoma but not in anaplastic astrocytoma and has prognostic significance. Clin Cancer Res. 2010;16:4289–97.

    Article  CAS  PubMed  Google Scholar 

  20. Wang F, Ma YL, Zhang P, Yang JJ, Chen HQ, Liu ZH, et al. A genetic variant in microRNA-196a2 is associated with increased cancer risk: a meta-analysis. Mol Biol Rep. 2012;39:269–75.

    Article  CAS  PubMed  Google Scholar 

  21. Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10:389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.

    Article  CAS  PubMed  Google Scholar 

  23. Bustin SA, Benes V, Garson J, Hellemans J, Huggett J, Kubista M, et al. The need for transparency and good practices in the qPCR literature. Nat Methods. 2013;10:1063–7.

    Article  CAS  PubMed  Google Scholar 

  24. Toraih EA, Mohammed EA, Farrag S, Ramsis N, Hosny S. Pilot study of serum microRNA-21 as a diagnostic and prognostic biomarker in Egyptian breast cancer patients. Mol Diagn Ther. 2015;19:179–90.

    Article  CAS  PubMed  Google Scholar 

  25. Shrestha S, Hsu SD, Huang WY, Huang HY, Chen W, Weng SL, et al. A systematic review of microRNA expression profiling studies in human gastric cancer. Cancer Med. 2014;3:878–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hsu SD, Tseng YT, Shrestha S, Lin YL, Khaleel A, Chou CH, et al. miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 2014;42(Database issue):D78–85.

    Article  CAS  PubMed  Google Scholar 

  27. Hsu PW, Huang HD, Hsu SD, Lin LZ, Tsou AP, Tseng CP, et al. miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res. 2006;34(Database issue):D135–9.

    Article  CAS  PubMed  Google Scholar 

  28. Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T, Kanellos I, et al. DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res. 2015;43(Database issue):D153–9.

    Article  PubMed  Google Scholar 

  29. Hsu SD, Chu CH, Tsou AP, Chen SJ, Chen HC, Hsu PW, et al. miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res. 2008;36(Database issue):D165–9.

    CAS  PubMed  Google Scholar 

  30. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32(Database issue):D277–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, et al. DIANA miRPath v. 2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 2012;40(Web Server issue):W498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang YC, Li Z, Carter JD, Soukup JM, Schwartz DA, Yang IV. Fine ambient particles induce oxidative stress and metal binding genes in human alveolar macrophages. Am J Respir Cell Mol Biol. 2009;41:544–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ruepp A, Kowarsch A, Schmidl D, Buggenthin F, Brauner B, Dunger I, et al. PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biol. 2010;11:R6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, et al. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2009;37(Database issue):D98–104.

    Article  CAS  PubMed  Google Scholar 

  35. Xie B, Ding Q, Han H, Wu D. miRCancer: a microRNA-cancer association database constructed by text mining on literature. Bioinformatics. 2013;29:638–44.

    Article  CAS  PubMed  Google Scholar 

  36. Zeng X, Zhang X, Zou Q. Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks. Brief Bioinform. 2016;17:193–203.

    Article  PubMed  Google Scholar 

  37. Vergoulis T, Kanellos I, Kostoulas N, Georgakilas G, Sellis T, Hatzigeorgiou A, et al. mirPub: a database for searching microRNA publications. Bioinformatics. 2015;31:1502–4.

    Article  CAS  PubMed  Google Scholar 

  38. Barupal JK, Saini AK, Chand T, Meena A, Beniwal S, Suthar JR, et al. ExcellmiRDB for translational genomics: a curated online resource for extracellular microRNAs. OMICS. 2015;19:24–30.

    Article  CAS  PubMed  Google Scholar 

  39. Bhattacharya A, Cui Y. miR2GO: comparative functional analysis for microRNAs. Bioinformatics. 2015;31:2403–5.

    Article  CAS  PubMed  Google Scholar 

  40. Lewis CM, Knight J. Introduction to genetic association studies. Cold Spring Harb Protoc. 2012;2012:297–306.

    Article  PubMed  Google Scholar 

  41. Li L, Sheng Y, Lv L, Gao J. The association between two microRNA variants (miR-499, miR-149) and gastrointestinal cancer risk: a meta-analysis. PLoS One. 2013;8:e81967.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T. New microRNAs from mouse and human. RNA. 2003;9:175–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu Z, Chen J, Tian T, Zhou X, Gu H, Xu L, et al. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest. 2008;118:2600–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.

    Article  CAS  PubMed  Google Scholar 

  45. Bouyssou JM, Manier S, Huynh D, Issa S, Roccaro AM, Ghobrial IM. Regulation of microRNAs in cancer metastasis. Biochim Biophys Acta Rev Cancer. 2014;1845:255–65.

    Article  CAS  Google Scholar 

  46. Maru DM, Singh RR, Hannah C, Albarracin CT, Li YX, Abraham R, et al. MicroRNA-196a is a potential marker of progression during Barrett’s metaplasia-dysplasia-invasive adenocarcinoma sequence in esophagus. Am J Pathol. 2009;174:1940–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yao Y, Suo AL, Li ZF, Liu LY, Tian T, Ni L, et al. MicroRNA profiling of human gastric cancer. Mol Med Rep. 2009;2:963–70.

    CAS  PubMed  Google Scholar 

  48. Tsai KW, Liao YL, Wu CW, Hu LY, Li SC, Chan WC, et al. Aberrant expression of miR-196a in gastric cancers and correlation with recurrence. Genes Chromosomes Cancer. 2012;51:394–401.

    Article  CAS  PubMed  Google Scholar 

  49. Li HL, Xie SP, Yang YL, Cheng YX, Zhang Y, Wang J, et al. Clinical significance of upregulation of mir-196a-5p in gastric cancer and enriched KEGG pathway analysis of target genes. Asian Pac J Cancer Prev. 2015;16:1781–7.

    Article  PubMed  Google Scholar 

  50. Schimanski CC, Frerichs K, Rahman F, Berger M, Lang H, Galle PR, et al. High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells. World J Gastroenterol. 2009;15:2089–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dong Y, Wu WK, Wu CW, Sung JJ, Yu J, Ng SS. MicroRNA dysregulation in colorectal cancer: a clinical perspective. Br J Cancer. 2011;104:893–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ge J, Chen Z, Li R, Lu T, Xiao G. Upregulation of microRNA-196a and microRNA-196b cooperatively correlate with aggressive progression and unfavorable prognosis in patients with colorectal cancer. Cancer Cell Int. 2014;14:128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A, et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene. 2007;26:4442–52.

    Article  CAS  PubMed  Google Scholar 

  54. Kong X, Du Y, Wang G, Gao J, Gong Y, Li L, et al. Detection of differentially expressed microRNAs in serum of pancreatic ductal adenocarcinoma patients: miR-196a could be a potential marker for poor prognosis. Dig Dis Sci. 2011;56:602–9.

    Article  CAS  PubMed  Google Scholar 

  55. Huang F, Tang J, Zhuang X, Cheng W, Chen W, Yao H, et al. MiR-196a promotes pancreatic cancer progression by targeting nuclear factor kappa-B-inhibitor alpha. PLoS One. 2014;9:e87897.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Hao Y, Wang J, Zhao L. The effect and mechanism of miR196a in HepG2 cell. Biomed Pharmacother. 2015;72:1–5.

    Article  CAS  PubMed  Google Scholar 

  57. Jiang J, Lee EJ, Gusev Y, Schmittgen TD. Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res. 2005;33:5394–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hui AB, Shi W, Boutros PC, Miller N, Pintilie M, Fyles T, et al. Robust global micro-RNA profiling with formalin-fixed paraffin-embedded breast cancer tissues. Lab Invest. 2009;89:597–606.

    Article  CAS  PubMed  Google Scholar 

  59. Li Y, Zhang M, Chen H, Dong Z, Ganapathy V, Thangaraju M, et al. Ratio of miR-196s to HOXC8 messenger RNA correlates with breast cancer cell migration and metastasis. Cancer Res. 2010;70:7894–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gocze K, Gombos K, Juhasz K, Kovacs K, Kajtar B, Benczik M, et al. Unique microRNA expression profiles in cervical cancer. Anticancer Res. 2013;33:2561–7.

    CAS  PubMed  Google Scholar 

  61. Fan Y, Fan J, Huang L, Ye M, Huang Z, Wang Y, et al. Increased expression of microRNA-196a predicts poor prognosis in human ovarian carcinoma. Int J Clin Exp Pathol. 2015;8:4132–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103:2257–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu XH, Lu KH, Wang KM, Sun M, Zhang EB, Yang JS, et al. MicroRNA-196a promotes non-small cell lung cancer cell proliferation and invasion through targeting HOXA5. BMC Cancer. 2012;12:348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang C, Yao C, Li H, Wang G, He X. Combined elevation of microRNA-196a and microRNA-196b in sera predicts unfavorable prognosis in patients with osteosarcomas. Int J Mol Sci. 2014;15:6544–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang G, Han D, Chen X, Zhang D, Wang L, Shi C, et al. MiR-196a exerts its oncogenic effect in glioblastoma multiforme by inhibition of IκBα both in vitro and in vivo. Neuro Oncol. 2014;16:652–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Braig S, Mueller DW, Rothhammer T, Bosserhoff AK. MicroRNA miR-196a is a central regulator of HOX-B7 and BMP4 expression in malignant melanoma. Cell Mol Life Sci. 2010;67:3535–48.

    Article  CAS  PubMed  Google Scholar 

  67. Mueller DW, Bosserhoff AK. MicroRNA miR-196a controls melanoma-associated genes by regulating HOX-C8 expression. Int J Cancer. 2011;129:1064–74.

    Article  CAS  PubMed  Google Scholar 

  68. Luthra R, Singh RR, Luthra MG, Li YX, Hannah C, Romans AM, et al. MicroRNA-196a targets annexin A1: a microRNA-mediated mechanism of annexin A1 downregulation in cancers. Oncogene. 2008;27:6667–78.

    Article  CAS  PubMed  Google Scholar 

  69. De Martino I, Visone R, Fedele M, Petrocca F, Palmieri D, Martinez Hoyos J, et al. Regulation of microRNA expression by HMGA1 proteins. Oncogene. 2009;28:1432–42.

    Article  PubMed  CAS  Google Scholar 

  70. Li XD, Li ZG, Song XX, Liu CF. A variant in microRNA-196a2 is associated with susceptibility to hepatocellular carcinoma in Chinese patients with cirrhosis. Pathology. 2010;42:669–73.

    Article  CAS  PubMed  Google Scholar 

  71. Kawasaki H, Taira K. MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells. Nucleic Acids Symp Ser (Oxf). 2004;48:211–2.

    Article  Google Scholar 

  72. Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA. 2007;297:1901–8.

    Article  CAS  PubMed  Google Scholar 

  73. Takahashi O, Hamada J, Abe M, Hata S, Asano T, Takahashi Y, et al. Dysregulated expression of HOX and ParaHOX genes in human esophageal squamous cell carcinoma. Oncol Rep. 2007;17:753–60.

    CAS  PubMed  Google Scholar 

  74. Dou LP, Li YH, Wang LL, Yu L. HOXA9 is direct target of miR-196a. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2011;27:166–9 (abstract).

    CAS  PubMed  Google Scholar 

  75. Niinuma T, Suzuki H, Nojima M, Nosho K, Yamamoto H, Takamaru H, et al. Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res. 2012;72:1126–36.

    Article  CAS  PubMed  Google Scholar 

  76. Siomi H, Siomi MC. Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell. 2010;38:323–32.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302:1–12.

    Article  CAS  PubMed  Google Scholar 

  78. Nguyen-Dien GT, Smith RA, Haupt LM, Griffiths Lyn R, Nguyen HT. Genetic polymorphisms in miRNAs targeting the estrogen receptor and their effect on breast cancer risk. Meta. Gene. 2014;2:226–36.

    Google Scholar 

  79. Akbari Moqadam F, Pieters R, den Boer ML. The hunting of targets: challenge in miRNA research. Leukemia. 2013;27:16–23.

    Article  CAS  PubMed  Google Scholar 

  80. Wang J, Song YX, Ma B, et al. Regulatory roles of non-coding RNAs in colorectal cancer. Int J Mol Sci. 2015;16:19886–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang L-J, Zhang K-L, Zhang N, et al. Serum miR-26a as a diagnostic and prognostic biomarker in cholangiocarcinoma. Oncotarget. 2015;6:18631–40.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Su Y, Li X, Ji W, Sun B, Xu C, Li Z, et al. Small molecule with big role: microRNAs in cancer metastatic microenvironments. Cancer Lett. 2014;344:147–56.

    Article  CAS  PubMed  Google Scholar 

  83. Han Q, Zhou C, Liu F, Xu G, Zheng R, Zhang X. MicroRNA-196a post-transcriptionally upregulates the UBE2C proto-oncogene and promotes cell proliferation in breast cancer. Oncol Rep. 2015;34:877–83.

    PubMed  Google Scholar 

  84. Hou W, Tian Q, Zheng J, Bonkovsky HL. MicroRNA-196 represses Bach1 protein and hepatitis C virus gene expression in human hepatoma cells expressing hepatitis C viral proteins. Hepatology. 2010;51:1494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wong SF, Agarwal V, Mansfield JH, Denans N, Schwartz MG, Prosser HM, et al. Independent regulation of vertebral number and vertebral identity by microRNA-196 paralogs. Proc Natl Acad Sci USA. 2015;112:E4884–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Aman A, Piotrowski T. Wnt/beta-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression. Dev Cell. 2008;15:749–61.

    Article  CAS  PubMed  Google Scholar 

  87. Zhu L, Chu H, Gu D, et al. A functional polymorphism in miRNA-196a2 is associated with colorectal cancer risk in a Chinese population. DNA Cell Biol. 2012;31:350–4.

    Article  CAS  PubMed  Google Scholar 

  88. Hoffman AE, Zheng T, Yi C, et al. microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res. 2009;69:5970–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chu H, Wang M, Shi D, et al. Hsa-miR-196a2 Rs11614913 polymorphism contributes to cancer susceptibility: evidence from 15 case-control studies. PLoS One. 2011;6:e18108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Guo J, Jin M, Zhang M, Chen K. A genetic variant in miR-196a2 increased digestive system cancer risks: a meta-analysis of 15 case-control studies. PLoS One. 2012;7:e30585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ye Y, Wang KK, Gu J, Yang H, Lin J, Ajani JA, et al. Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev Res (Phila). 2008;1:460–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Okubo M, Tahara T, Shibata T, Yamashita H, Nakamura M, Yoshioka D, et al. Association between common genetic variants in pre-microRNAs and gastric cancer risk in Japanese population. Helicobacter. 2010;15:524–31.

    Article  CAS  PubMed  Google Scholar 

  93. Peng S, Kuang Z, Sheng C, Zhang Y, Xu H, Cheng Q. Association of microRNA-196a-2 gene polymorphism with gastric cancer risk in a Chinese population. Dig Dis Sci. 2010;55:2288–93.

    Article  CAS  PubMed  Google Scholar 

  94. Stenholm L, Stoehlmacher-Williams J, Al-Batran SE, Heussen N, Akin S, Pauligk C, et al. Prognostic role of microRNA polymorphisms in advanced gastric cancer: a translational study of the Arbeitsgemeinschaft Internistische Onkologie (AIO). Ann Oncol. 2013;24:2581–8.

    Article  CAS  PubMed  Google Scholar 

  95. Akkiz H, Bayram S, Bekar A, Akgöllü E, Ulger Y. A functional polymorphism in pre-microRNA-196a-2 contributes to the susceptibility of hepatocellular carcinoma in a Turkish population: a case-control study. J Viral Hepat. 2011;18:e399–407.

    Article  CAS  PubMed  Google Scholar 

  96. Qi P, Dou TH, Geng L, Zhou FG, Gu X, Wang H, et al. Association of a variant in MIR 196A2 with susceptibility to hepatocellular carcinoma in male Chinese patients with chronic hepatitis B virus infection. Hum Immunol. 2010;71:621–6.

    Article  CAS  PubMed  Google Scholar 

  97. Srivastava K, Srivastava A, Mittal B. Common genetic variants in pre-microRNAs and risk of gallbladder cancer in North Indian population. J Hum Genet. 2010;55:495–9.

    Article  CAS  PubMed  Google Scholar 

  98. Catucci I, Yang R, Verderio P, Pizzamiglio S, Heesen L, Hemminki K, et al. Evaluation of SNPs in miR-146a, miR196a2 and miR-499 as low-penetrance alleles in German and Italian familial breast cancer cases. Hum Mutat. 2010;31:E1052–7.

    Article  PubMed  Google Scholar 

  99. Hu Z, Liang J, Wang Z, Tian T, Zhou X, Chen J, et al. Common genetic variants in pre-micro- sRNAs were associated with increased risk of breast cancer in Chinese women. Hum Mutat. 2009;30:79–84.

    Article  CAS  PubMed  Google Scholar 

  100. Hong YS, Kang HJ, Kwak JY, Park BL, You CH, Kim YM, et al. Association between microRNA196a2 rs11614913 genotypes and the risk of non-small cell lung cancer in Korean population. J Prev Med Public Health. 2011;44:125–30.

    Article  PubMed  Google Scholar 

  101. Tian T, Shu Y, Chen J, Hu Z, Xu L, Jin G, et al. A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol Biomark Prev. 2009;18:1183–7.

    Article  CAS  Google Scholar 

  102. Vinci S, Gelmini S, Pratesi N, Conti S, Malentacchi F, Simi L, et al. Genetic variants in miR-146a, miR-149, miR-196a2, miR-499 and their influence on the relative expression in lung cancers. Clin Chem Lab Med. 2011;49:2073–80.

    Article  CAS  Google Scholar 

  103. Yoon KA, Yoon H, Park S, Jang HJ, Zo JI, Lee HS, et al. The prognostic impact of microRNA sequence polymorphisms on the recurrence of patients with completely resected non-small cell lung cancer. J Thorac Cardiovasc Surg. 2012;144:794–807.

    Article  CAS  PubMed  Google Scholar 

  104. George GP, Gangwar R, Mandal RK, Sankhwar SN, Mittal RD. Genetic variation in microRNA genes and prostate cancer risk in North Indian population. Mol Biol Rep. 2011;38:1609–15.

    Article  CAS  PubMed  Google Scholar 

  105. Dou T, Wu Q, Chen X, Ribas J, Ni X, Tang C, et al. A polymorphism of microRNA196a genome region was associated with decreased risk of glioma in Chinese population. J Cancer Res Clin Oncol. 2010;136:1853–9.

    Article  CAS  PubMed  Google Scholar 

  106. Liu CJ, Tsai MM, Tu HF, Lui MT, Cheng HW, Lin SC. miR-196a overexpression and miR-196a2 gene polymorphism are prognostic predictors of oral carcinomas. Ann Surg Oncol. 2013;20(Suppl 3):S406–14.

    Article  PubMed  Google Scholar 

  107. Kim MJ, Yoo SS, Choi YY, Park JY. A functional polymorphism in the pre-microRNA-196a2 and the risk of lung cancer in a Korean population. Lung Cancer. 2010;69:127–9.

    Article  PubMed  Google Scholar 

  108. Xu W, Xu J, Liu S, Chen B, Wang X, Li Y, et al. Effects of common polymorphisms rs11614913 in miR-196a2 and rs2910164 in miR-146a on cancer susceptibility: a meta-analysis. PLoS One. 2011;6:e20471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Han Y, Pu R, Han X, Zhao J, Zhang Y, Zhang Q, et al. Associations of pri-miR-34b/c and pre-miR-196a2 polymorphisms and their multiplicative interactions with hepatitis B virus mutations with hepatocellular carcinoma risk. PLoS One. 2013;8:e58564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang Z, Zhang L, Shi X, Xu H, Wang T, Bian J. Association between two common polymorphisms and risk of hepatocellular carcinoma: evidence from an updated meta-analysis. BioMed Res Int. 2014;2014:468605. doi:10.1155/2014/468605.

    PubMed  PubMed Central  Google Scholar 

  111. Hornstein E, Mansfield JH, Yekta S, Hu JK, Harfe BD, McManus MT, et al. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature. 2005;438:671–4.

    Article  CAS  PubMed  Google Scholar 

  112. de la Chapelle A, Jazdzewski K. MicroRNAs in thyroid cancer. J Clin Endocrinol Metab. 2011;96:3326–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Christensen BC, Avissar-Whiting M, Ouellet LG, Butler RA, Nelson HH, McClean MD, Marsit CJ, Kelsey KT. Mature microRNA sequence polymorphism in MIR196A2 is associated with risk and prognosis of head and neck cancer. Clin Cancer Res. 2010;16:3713–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhao H, Xu J, Zhao D, Geng M, Ge H, Fu L, et al. Somatic mutation of the SNP rs11614913 and its association with increased MIR 196A2 expression in breast cancer. DNA Cell Biol. 2016;35:81–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Oncology Diagnostic Unit, Suez Canal University, Egypt for providing the facilities for performing the research work at the unit and thank the patients who participated in our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manal S. Fawzy.

Ethics declarations

Conflict of interest

Eman A. Toraih, Manal S. Fawzy, Eman A. Mohammed, Mohammad H. Hussein, and Mohamad M. El-Labban declare that they have no competing interests.

Ethical approval and informed consent

The study was conducted in accordance with the guidelines in the Declaration of Helsinki and it has been approved by the Medical Research Ethics Committee of Faculty of Medicine, Suez Canal University (Approval No. 2510).

Funding

No sources of funding were used for this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toraih, E.A., Fawzy, M.S., Mohammed, E.A. et al. MicroRNA-196a2 Biomarker and Targetome Network Analysis in Solid Tumors. Mol Diagn Ther 20, 559–577 (2016). https://doi.org/10.1007/s40291-016-0223-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-016-0223-2

Keywords

Navigation