Skip to main content

Advertisement

Log in

A Neuroinflammatory Model for Acute Fatigue During Exercise

  • Current Opinion
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

A common emotional human anomaly is the manifestation of fatigue which is felt as an overall symptom in times of sickness and disease, but also during and after exercise as a specific or general symptom of exhaustion and over exertion. The main culprit of fatigue during illness is thought to be the immune/inflammatory response that occurs as the body attempts to fight off the invading virus or bacteria. Numerous models of fatigue have been developed to help us understand its mechanisms in both disease and exercise, but none so far have specifically discussed the interactions between cytokine release during exercise and its effects on afferent feedback and processing of signals in the brain that might lead to sensations and feelings of fatigue. Therefore, this article examines the literature in a range of disciplines spanning exercise, disease, immunology, and neurology, in order to develop a neuroinflammatory model for acute fatigue during exercise, similar to that which we often feel during illness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Johnson AK, Gross PM. Sensory circumventricular organs and brain homeostatic pathways. FASEB J. 1993;7(8):678–86.

    PubMed  CAS  Google Scholar 

  2. Coghill R, Talbot J, Evans A, et al. Distributed processing of pain and vibration by the human brain. J Neurosci. 1994;14(7):4095–108.

    PubMed  CAS  Google Scholar 

  3. Liang M, Mouraux A, Iannetti GD. Parallel processing of nociceptive and non-nociceptive somatosensory information in the human primary and secondary somatosensory cortices: evidence from dynamic causal modeling of functional magnetic resonance imaging data. J Neurosci. 2011;31(24):8976–85.

    Article  PubMed  CAS  Google Scholar 

  4. Ploner M, Schmitz F, Freund H-J, et al. Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol. 1999;81(6):3100–4.

    PubMed  CAS  Google Scholar 

  5. Maier SF, Watkins LR. Cytokines for psychologists: implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychol Rev. 1998;105(1):83.

    Article  PubMed  CAS  Google Scholar 

  6. St Gibson A, Lambert E, Rauch LG, et al. The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sports Med. 2006;36(8):705–22.

    Article  Google Scholar 

  7. Olofsson PS, Rosas-Ballina M, Levine YA, et al. Rethinking inflammation: neural circuits in the regulation of immunity. Immunol Rev. 2012;248(1):188–204.

    Article  PubMed  Google Scholar 

  8. Watkins LR, Maier SF, Goehler LE. Cytokine-to-brain communication: a review and analysis of alternative mechanisms. Life Sci. 1995;57(11):1011–26.

    Article  PubMed  CAS  Google Scholar 

  9. Vitkovic L, Konsman JP, Bockaert J, et al. Cytokine signals propagate through the brain. Mol Psychiatry. 2000;5(6):604.

    Article  PubMed  CAS  Google Scholar 

  10. St Clair Gibson A, Noakes TD. Evidence for complex system integration and dynamic neural regulation of skeletal muscle recruitment during exercise in humans. Br J Sports Med. 2004;38(6):797–806.

    Article  PubMed  CAS  Google Scholar 

  11. Lambert EV, St Clair Gibson A, TD Noakes. Complex systems model of fatigue: integrative homoeostatic control of peripheral physiological systems during exercise in humans. Br J Sports Med. 2005;39(1):52–62.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Dantzer R, O’Conner JC, Freund GG, et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Heesen C, Nawrath L, Reich C, et al. Fatigue in multiple sclerosis: an example of cytokine mediated sickness behaviour? J Neurol Neurosurg Psychiatry. 2006;77(1):34–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Eccles R. Understanding the symptoms of the common cold and influenza. Lancet Infect Dis. 2005;5(11):718–25.

    Article  PubMed  Google Scholar 

  15. Hubbard JL, Mechan DJ. The physiology of health and illness: with related anatomy. UK: Stanley Thornes Ltd; 1997. p. 361–6.

    Google Scholar 

  16. Skoner DP, Gentile DA, Patel A, et al. Evidence for cytokine mediation of disease expression in adults experimentally infected with influenza A virus. J Infect Dis. 1999;180(1):10–4.

    Article  PubMed  CAS  Google Scholar 

  17. Van Reeth K. Cytokines in the pathogenesis of influenza. Vet Microbiol. 2000;74(1–2):109–16.

    Article  PubMed  Google Scholar 

  18. Borish L, Schmaling K, DiClementi JD, et al. Chronic fatigue syndrome: identification of distinct subgroups on the basis of allergy and psychologic variables. J Allergy Clin Immunol. 1998;102(2):222–30.

    Article  PubMed  CAS  Google Scholar 

  19. Buchwald D, Wener MH, Pearlman T, et al. Markers of inflammation and immune activation in chronic fatigue and chronic fatigue syndrome. J Rheumatol. 1997;24(2):372–6.

    PubMed  CAS  Google Scholar 

  20. Gupta S, Aggarwal S, See D, et al. Cytokine production by adherent and non-adherent mononuclear cells in chronic fatigue syndrome. J Psychiatr Res. 1997;31(1):149–56.

    Article  PubMed  CAS  Google Scholar 

  21. Chao CC, Gallagher M, Phair J, et al. Serum neopterin and interleukin-6 levels in chronic fatigue syndrome. J Infect Dis. 1990;162(6):1412–3.

    Article  PubMed  CAS  Google Scholar 

  22. Moss R, Mercandetti A, Vojdani A. TNF-α and chronic fatigue syndrome. J Clin Immunol. 1999;19(5):314–6.

    Article  PubMed  CAS  Google Scholar 

  23. Patarca R, Klimas N, Sandler D, et al. Interindividual immune status variation patterns in patients with chronic fatigue syndrome. J Chronic Fatigue Syndr. 1996;2(1):13–39.

    Article  Google Scholar 

  24. Robson-Ansley P, Cockburn E, Walshe I, et al. The effect of exercise on plasma soluble IL-6 receptor concentration: a dichotomous response. Exerc Immunol Rev. 2010;16:56–76.

    PubMed  Google Scholar 

  25. Ishihara K, Hirano T. IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev. 2002;13(4–5):357–68.

    Article  PubMed  CAS  Google Scholar 

  26. Rovaris M, Barnes D, Woodrofe N, et al. Patterns of disease activity in multiple sclerosis patients: a study with quantitative gadolinium-enhanced brain MRI and cytokine measurement in different clinical subgroups. J Neurol. 1996;243(7):536–42.

    Article  PubMed  CAS  Google Scholar 

  27. Robson-Ansley P, Barwood M, Canavan J, et al. The effect of repeated endurance exercise on IL-6 and sIL-6R and their relationship with sensations of fatigue at rest. Cytokine. 2009;45(2):111–6.

    Article  PubMed  CAS  Google Scholar 

  28. Gray SR, Clifford M, Lancaster R, et al. The response of circulating levels of the interleukin-6/interleukin-6 receptor complex to exercise in young men. Cytokine. 2009;47(2):98–102.

    Article  PubMed  CAS  Google Scholar 

  29. Kreher JB, Schwartz JB. Overtraining syndrome: a practical guide. Sports health: a multidisciplinary approach. 2012;4(2):128–38.

  30. Robson-Ansley P, Blannin A, Gleeson M. Elevated plasma interleukin-6 levels in trained male triathletes following an acute period of intense interval training. Eur J Appl Physiol. 2007;99(4):353–60.

    Article  PubMed  CAS  Google Scholar 

  31. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287–332.

    Article  PubMed  CAS  Google Scholar 

  32. Grange RW, Houston ME. Simultaneous potentiation and fatigue in quadriceps after a 60-second maximal voluntary isometric contraction. J Appl Physiol. 1991;70(2):726–31.

    PubMed  CAS  Google Scholar 

  33. Kent-Braun JA. Central and peripheral contributions to muscle fatigue in humans during sustained maximal effort. Euro J Appl Physiol. 1999;80(1):57–63.

    Article  CAS  Google Scholar 

  34. Gandevia SC, Allen GM, Butler JE, et al. Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. J Physiol. 1996;490:529–36.

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Martin PG, Smith JL, Butler JE, et al. Fatigue-sensitive afferents inhibit extensor but not flexor motoneurons in humans. J Neurosci. 2006;26(18):4796–802.

    Article  PubMed  CAS  Google Scholar 

  36. Wiles CM, Edwards RHT. The effect of temperature, ischaemia and contractile activity on the relaxation rate of human muscle. Clin Physiol. 1982;2(6):485–97.

    Article  PubMed  CAS  Google Scholar 

  37. Kennedy DS, McNeil CJ, Gandevia SC, et al. Firing of antagonist small-diameter muscle afferents reduces voluntary activation and torque of elbow flexors. J Physiol. 2013;591(14):3591–604.

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Holloszy J. Regulation by exercise of skeletal muscle content of mitochondria and GLUT4. J Physiol Pharmacol. 2008;59(Suppl 7):5–18.

    PubMed  Google Scholar 

  39. Febbraio MA, Hiscock N, Sacchetti M, et al. Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes. 2004;53(7):1643–8.

    Article  PubMed  CAS  Google Scholar 

  40. Mendham A, Donges C, Liberts E, et al. Effects of mode and intensity on the acute exercise-induced IL-6 and CRP responses in a sedentary, overweight population. Eur J Appl Physiol. 2011;111(6):1035–45.

    Article  PubMed  CAS  Google Scholar 

  41. Mendham A, Coutts A, Duffield R. The acute effects of aerobic exercise and modified rugby on inflammation and glucose homeostasis within Indigenous Australians. Eur J Appl Physiol. 2012;112(11):3787–95.

    Article  PubMed  CAS  Google Scholar 

  42. Starkie RL, Arkinstall MJ, Koukoulas I, et al. Carbohydrate ingestion attenuates the increase in plasma interleukin-6, but not skeletal muscle interleukin-6 mRNA, during exercise in humans. J Physiol. 2001;533(2):585–91.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Ostrowski K, Rohde T, Zacho M, et al. Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. J Physiol. 1998;508(3):949–53.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Robson-Ansley PJ, Milander Ld, Collins M, et al. Acute Interleukin-6 administration impairs athletic performance in healthy, trained male runners. Can J Appl Physiol. 2004;29(4):411–8.

    Article  PubMed  CAS  Google Scholar 

  45. Taga T, Kishimoto T. gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol. 1997;15(1):797.

    Article  PubMed  CAS  Google Scholar 

  46. Andratsch M, Mair N, Constantin CE, et al. A key role for gp130 expressed on peripheral sensory nerves in pathological pain. J Neurosci. 2009;29(43):13473–83.

    Article  PubMed  CAS  Google Scholar 

  47. Jones SA, Richards PJ, Scheller J, et al. Review: IL-6 transsignaling: the in vivo consequences. J Interferon Cytokine Res. 2005;25(5):241–53.

    Article  PubMed  CAS  Google Scholar 

  48. Gleeson M. Anti-inflammatory effects of exercise. Obesity, inflammation and cancer. New York: Springer; 2013. p. 401–24.

  49. Papanicolaou DA, Wilder RL, Manolagas SC, et al. The pathophysiologic roles of interleukin-6 in human disease. Ann Intern Med. 1998;128(2):127–37.

    Article  PubMed  CAS  Google Scholar 

  50. Sommer C, Kress M. Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett. 2004;361(1–3):184–7.

    Article  PubMed  CAS  Google Scholar 

  51. Gray SR, Robinson M, Nimmo MA. Response of plasma IL-6 and its soluble receptors during submaximal exercise to fatigue in sedentary middle-aged men. Cell Stress Chaperones. 2008;13(2):247–51.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Patterson S, Reid S, Gray S, et al. The response of plasma interleukin-6 and its soluble receptors to exercise in the cold in humans. J Sports Sci. 2008;26(9):927–33.

    Article  PubMed  Google Scholar 

  53. Robinson M, Gray SR, Watson MS, et al. Plasma IL-6, its soluble receptors and F2-isoprostanes at rest and during exercise in chronic fatigue syndrome. Scand J Med Sci Sports. 2010;20(2):282–90.

    Article  PubMed  CAS  Google Scholar 

  54. Brenn D, Richter F, Schaible H-G. Sensitization of unmyelinated sensory fibers of the joint nerve to mechanical stimuli by interleukin-6 in the rat: an inflammatory mechanism of joint pain. Arthritis Rheum. 2007;56(1):351–9.

    Article  PubMed  CAS  Google Scholar 

  55. Chichorro JG, Lorenzetti BB, Zampronio AR. Involvement of bradykinin, cytokines, sympathetic amines and prostaglandins in formalin-induced orofacial nociception in rats. Br J Pharmacol. 2004;141(7):1175–84.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Cunha JM, Cunha FQ, Poole S, et al. Cytokine-mediated inflammatory hyperalgesia limited by interleukin-1 receptor antagonist. Br J Pharmacol. 2000;130(6):1418–24.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Albrecht PJ, Rice FL. Role of small-fiber afferents in pain mechanisms with implications on diagnosis and treatment. Curr Pain Headache Rep. 2010;14(3):179–88.

    Article  PubMed  Google Scholar 

  58. Roth J, Harre EM, Rummel C, et al. Signaling the brain in systemic inflammation: role of sensory circumventricular organs. Front Biosci. 2004;1(9):290–300.

    Article  Google Scholar 

  59. Bear MF, Connors BW, Paradiso MA. Neuroscience: exploring the brain. 3rd ed. USA: Lippincott Williams and Wilkins; 2006. p. 413–4.

    Google Scholar 

  60. Luc Darques J, Decherchi P, Jammes Y. Mechanisms of fatigue-induced activation of group IV muscle afferents: the roles played by lactic acid and inflammatory mediators. Neurosci Lett. 1998;257(2):109–12.

    Article  Google Scholar 

  61. Chester AR, Kathryn HG. Augmentation of exercise-induced muscle sympathetic nerve activity during muscle heating. J Appl Physiol. 1997;82(6):1719–33.

    Google Scholar 

  62. Goehler LE, Gaykema RPA, Hansen MK, et al. Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton Neurosci. 2000;85(1–3):49–59.

    Article  PubMed  CAS  Google Scholar 

  63. Immke DC, McCleskey EW. Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons. Nat Neurosci. 2001;4(9):869–70.

    Article  PubMed  CAS  Google Scholar 

  64. Gautam M, Benson CJ, Sluka KA. Increased response of muscle sensory neurons to decreases in pH after muscle inflammation. Neurosci. 2010;170(3):893–900.

    Article  CAS  Google Scholar 

  65. Street D, Bangsbo J, Juel C. Interstitial pH in human skeletal muscle during and after dynamic graded exercise. J Physiol. 2001;537(3):993–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Yquel RJ, Arsac LM, Thiaudiere E, et al. Effect of creatine supplementation on phosphocreatine resynthesis, inorganic phosphate accumulation and pH during intermittent maximal exercise. J Sports Sci. 2002;20(5):427–37.

    Article  PubMed  CAS  Google Scholar 

  67. Cunha FQ, Poole S, Lorenzetti BB, et al. The pivotal role of tumour necrosis factor α in the development of inflammatory hyperalgesia. Br J Pharmacol. 1992;107(3):660–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Hoheisel U, Unger T, Mense S. Excitatory and modulatory effects of inflammatory cytokines and neurotrophins on mechanosensitive group IV muscle afferents in the rat. Pain. 2005;114(1–2):168–76.

    Article  PubMed  CAS  Google Scholar 

  69. Vissers KC, De Jongh RF, Hoffmann VL, et al. Exogenous interleukin-6 increases cold allodynia in rats with a mononeuropathy. Cytokine. 2005;30(4):154–9.

    Article  PubMed  CAS  Google Scholar 

  70. Vallières L, Rivest S. Regulation of the genes encoding interleukin-6, its receptor, and gp130 in the rat brain in response to the immune activator lipopolysaccharide and the proinflammatory cytokine interleukin-1β. J Neurochem. 1997;69(4):1668–83.

    Article  PubMed  Google Scholar 

  71. Quan N, Stern EL, Whiteside MB, et al. Induction of pro-inflammatory cytokine mRNAs in the brain after peripheral injection of subseptic doses of lipopolysaccharide in the rat. J Neuroimmunol. 1999;93(1–2):72–80.

    Article  PubMed  CAS  Google Scholar 

  72. Nybo L, Nielsen B, Pedersen BK, et al. Interleukin-6 release from the human brain during prolonged exercise. J Physiol. 2002;1(542):991–5.

    Article  Google Scholar 

  73. Phelps EA, LeDoux JE. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron. 2005;48(2):175–87.

    Article  PubMed  CAS  Google Scholar 

  74. Hall EE, Ekkekakis P, Petruzzello SJ. Regional brain activity and strenuous exercise: predicting affective responses using EEG asymmetry. Biol Psychol. 2007;75(2):194–200.

    Article  PubMed  Google Scholar 

  75. Nielsen B, Hyldig T, Bidstrup F, et al. Brain activity and fatigue during prolonged exercise in the heat. Pflügers Arch. 2001;442(1):41–8.

    Article  PubMed  CAS  Google Scholar 

  76. Nybo L, Nielsen B. Perceived exertion is associated with an altered brain activity during exercise with progressive hyperthermia. J Appl Physiol. 2001;91(5):2017–23.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors ensure that there is no conflict of interest in regards to the present paper. No sources of funding were used to assist in the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole T. Vargas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas, N.T., Marino, F. A Neuroinflammatory Model for Acute Fatigue During Exercise. Sports Med 44, 1479–1487 (2014). https://doi.org/10.1007/s40279-014-0232-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-014-0232-4

Navigation