Skip to main content
Log in

Genetic Polymorphisms Affecting the Pharmacokinetics of Antiretroviral Drugs

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Antiretroviral treatment is highly effective in enhancing HIV-positive patients' survival and quality of life. Despite an increased tolerability in recent years, a substantial amount of patients experience side effects. Antiretrovirals' efficacy and tolerability have been associated with plasma concentrations and single nucleotide polymorphisms in selected genes involved in drug disposition.

Objective

Our aim was to review the current knowledge in genetic polymorphisms affecting plasma, intracellular or compartmental concentrations of antiretrovirals.

Methods

A search of the PubMed database was conducted to identify relevant articles, using the following terms: ‘pharmacogenetics’ or ‘pharmacogenomics’ or ‘single nucleotide polymorphisms’ or ‘genetic/allelic variants’ and ‘pharmacokinetics’ or ‘concentrations’ and ‘HIV’ or ‘antiretroviral’. Abstracts from the main HIV conferences during 2015 and 2016 were also searched using the same keywords. Abstracts were manually checked and, if relevant, full papers were obtained. Only articles published in English were selected.

Results

Several genetic polymorphisms in genes coding enzymes involved in drug metabolism (cytochrome P450 isoenzymes and uridine diphosphate glucuronosyltransferases) and transport (P-glycoprotein, anionic and cationic transporters, other transporters), as well as nuclear receptors (pregnane X receptor and the constitutive androstane receptor), have been associated with concentrations of antiretrovirals. The extent of such influence, the conflicting data, and the potential clinical relevance are discussed in the main section of this article.

Conclusion

Genetic polymorphisms may affect antiretroviral disposition, as well as both efficacy and toxicity. Despite a large amount of data, such precious knowledge has seldom been applied in patients. Studies on the clinical relevance and cost effectiveness of tailoring antiretroviral regimens to patients’ genetic assets are lacking, but their importance may grow with the increasing age and complexity of persons living with HIV/AIDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ikediobi O, Aouizerat B, Xiao Y, Gandhi M, Gebhardt S, Warnich L. Analysis of pharmacogenetic traits in two distinct South African populations. Hum Genomics. 2011;5(4):265–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Siccardi M, Olagunju A, Simiele M, D’Avolio A, Calcagno A, Di Perri G, et al. Class-specific relative genetic contribution for key antiretroviral drugs. J Antimicrob Chemother. 2015;70(11):3074–9.

    Article  CAS  PubMed  Google Scholar 

  3. Gavegnano C, Schinazi RF. Antiretroviral therapy in macrophages: implication for HIV eradication. Antivir Chem Chemother. 2009;20(2):63–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nishimura M, Yaguti H, Yoshitsugu H, Naito S, Satoh T. Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi. 2003;123(5):369–75.

    Article  CAS  PubMed  Google Scholar 

  5. Preissner SC, Hoffmann MF, Preissner R, Dunkel M, Gewiess A, Preissner S. Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. PLoS One. 2013;8(12):e82562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Gounden V, van Niekerk C, Snyman T, George JA. Presence of the CYP2B6 516G>T polymorphism, increased plasma Efavirenz concentrations and early neuropsychiatric side effects in South African HIV-infected patients. AIDS Res Ther. 2010;7:32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Haas DW, Ribaudo HJ, Kim RB, Tierney C, Wilkinson GR, Gulick RM, et al. Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study. AIDS. 2004;18(18):2391–400.

    CAS  PubMed  Google Scholar 

  8. Rotger M, Colombo S, Furrer H, Bleiber G, Buclin T, Lee BL, et al. Influence of CYP2B6 polymorphism on plasma and intracellular concentrations and toxicity of efavirenz and nevirapine in HIV-infected patients. Pharmacogenet Genomics. 2005;15(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  9. Rotger M, Tegude H, Colombo S, Cavassini M, Furrer H, Decosterd L, et al. Predictive value of known and novel alleles of CYP2B6 for efavirenz plasma concentrations in HIV-infected individuals. Clin Pharmacol Ther. 2007;81(4):557–66.

    Article  CAS  PubMed  Google Scholar 

  10. Saitoh A, Fletcher CV, Brundage R, Alvero C, Fenton T, Hsia K, et al. Efavirenz pharmacokinetics in HIV-1-infected children are associated with CYP2B6-G516T polymorphism. J Acquir Immune Defic Syndr. 2007;45(3):280–5.

    CAS  PubMed  Google Scholar 

  11. Gatanaga H, Hayashida T, Tsuchiya K, Yoshino M, Kuwahara T, Tsukada H, et al. Successful efavirenz dose reduction in HIV type 1-infected individuals with cytochrome P450 2B6 *6 and *26. Clin Infect Dis. 2007;45(9):1230–7.

    Article  CAS  PubMed  Google Scholar 

  12. Winzer R, Langmann P, Zilly M, Tollmann F, Schubert J, Klinker H, et al. No influence of the P-glycoprotein genotype (MDR1 C3435T) on plasma levels of lopinavir and efavirenz during antiretroviral treatment. Eur J Med Res. 2003;8(12):531–4.

    CAS  PubMed  Google Scholar 

  13. Haas DW, Smeaton LM, Shafer RW, Robbins GK, Morse GD, Labbe L, et al. Pharmacogenetics of long-term responses to antiretroviral regimens containing efavirenz and/or nelfinavir: an Adult Aids Clinical Trials Group Study. J Infect Dis. 2005;192(11):1931–42.

    Article  CAS  PubMed  Google Scholar 

  14. Motsinger AA, Ritchie MD, Shafer RW, Robbins GK, Morse GD, Labbe L, et al. Multilocus genetic interactions and response to efavirenz-containing regimens: an adult AIDS clinical trials group study. Pharmacogenet Genomics. 2006;16(11):837–45.

    Article  CAS  PubMed  Google Scholar 

  15. Mutwa PR, Fillekes Q, Malgaz M, Tuyishimire D, Kraats R, Boer KR, et al. Mid-dosing interval efavirenz plasma concentrations in HIV-1-infected children in Rwanda: treatment efficacy, tolerability, adherence, and the influence of CYP2B6 polymorphisms. J Acquir Immune Defic Syndr. 2012;60(4):400–4.

    Article  CAS  PubMed  Google Scholar 

  16. Ngaimisi E, Habtewold A, Minzi O, Makonnen E, Mugusi S, Amogne W, et al. Importance of ethnicity, CYP2B6 and ABCB1 genotype for efavirenz pharmacokinetics and treatment outcomes: a parallel-group prospective cohort study in two sub-Saharan Africa populations. PLoS One. 2013;8(7):e67946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sarfo FS, Zhang Y, Egan D, Tetteh LA, Phillips R, Bedu-Addo G, et al. Pharmacogenetic associations with plasma efavirenz concentrations and clinical correlates in a retrospective cohort of Ghanaian HIV-infected patients. J Antimicrob Chemother. 2014;69(2):491–9.

    Article  CAS  PubMed  Google Scholar 

  18. Ribaudo HJ, Haas DW, Tierney C, Kim RB, Wilkinson GR, Gulick RM, et al. Pharmacogenetics of plasma efavirenz exposure after treatment discontinuation: an Adult AIDS Clinical Trials Group Study. Clin Infect Dis. 2006;42(3):401–7.

    Article  CAS  PubMed  Google Scholar 

  19. Wang J, Sonnerborg A, Rane A, Josephson F, Lundgren S, Stahle L, et al. Identification of a novel specific CYP2B6 allele in Africans causing impaired metabolism of the HIV drug efavirenz. Pharmacogenet Genomics. 2006;16(3):191–8.

    PubMed  Google Scholar 

  20. Wyen C, Hendra H, Vogel M, Hoffmann C, Knechten H, Brockmeyer NH, et al. Impact of CYP2B6 983T>C polymorphism on non-nucleoside reverse transcriptase inhibitor plasma concentrations in HIV-infected patients. J Antimicrob Chemother. 2008;61(4):914–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haas DW, Gebretsadik T, Mayo G, Menon UN, Acosta EP, Shintani A, et al. Associations between CYP2B6 polymorphisms and pharmacokinetics after a single dose of nevirapine or efavirenz in African Americans. J Infect Dis. 2009;199(6):872–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kwara A, Lartey M, Sagoe KW, Kenu E, Court MH. CYP2B6, CYP2A6 and UGT2B7 genetic polymorphisms are predictors of efavirenz mid-dose concentration in HIV-infected patients. AIDS. 2009;23(16):2101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kwara A, Lartey M, Sagoe KW, Rzek NL, Court MH. CYP2B6 (c.516G→T) and CYP2A6 (*9B and/or *17) polymorphisms are independent predictors of efavirenz plasma concentrations in HIV-infected patients. Br J Clin Pharmacol. 2009;67(4):427–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mukonzo JK, Roshammar D, Waako P, Andersson M, Fukasawa T, Milani L, et al. A novel polymorphism in ABCB1 gene, CYP2B6*6 and sex predict single-dose efavirenz population pharmacokinetics in Ugandans. Br J Clin Pharmacol. 2009;68(5):690–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ribaudo HJ, Liu H, Schwab M, Schaeffeler E, Eichelbaum M, Motsinger-Reif AA, et al. Effect of CYP2B6, ABCB1, and CYP3A5 polymorphisms on efavirenz pharmacokinetics and treatment response: an AIDS Clinical Trials Group study. J Infect Dis. 2010;202(5):717–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cusato J, Tomasello C, Simiele M, Calcagno A, Bonora S, Marinaro L, et al. Efavirenz pharmacogenetics in a cohort of Italian patients. Int J Antimicrob Agents. 2015;47(2):117–23.

    Article  PubMed  CAS  Google Scholar 

  27. Habtewold A, Amogne W, Makonnen E, Yimer G, Riedel KD, Ueda N, et al. Long-term effect of efavirenz autoinduction on plasma/peripheral blood mononuclear cell drug exposure and CD4 count is influenced by UGT2B7 and CYP2B6 genotypes among HIV patients. J Antimicrob Chemother. 2011;66(10):2350–61.

    Article  CAS  PubMed  Google Scholar 

  28. Heil SG, van der Ende ME, Schenk PW, van der Heiden I, Lindemans J, Burger D, et al. Associations between ABCB1, CYP2A6, CYP2B6, CYP2D6, and CYP3A5 alleles in relation to efavirenz and nevirapine pharmacokinetics in HIV-infected individuals. Ther Drug Monit. 2012;34(2):153–9.

    Article  CAS  PubMed  Google Scholar 

  29. Viljoen M, Karlsson MO, Meyers TM, Gous H, Dandara C, Rheeders M. Influence of CYP2B6 516G>T polymorphism and interoccasion variability (IOV) on the population pharmacokinetics of efavirenz in HIV-infected South African children. Eur J Clin Pharmacol. 2012;68(4):339–47.

    Article  CAS  PubMed  Google Scholar 

  30. Saitoh A, Sarles E, Capparelli E, Aweeka F, Kovacs A, Burchett SK, et al. CYP2B6 genetic variants are associated with nevirapine pharmacokinetics and clinical response in HIV-1-infected children. AIDS. 2007;21(16):2191–9.

    Article  CAS  PubMed  Google Scholar 

  31. Penzak SR, Kabuye G, Mugyenyi P, Mbamanya F, Natarajan V, Alfaro RM, et al. Cytochrome P450 2B6 (CYP2B6) G516T influences nevirapine plasma concentrations in HIV-infected patients in Uganda. HIV Med. 2007;8(2):86–91.

    Article  CAS  PubMed  Google Scholar 

  32. Schipani A, Wyen C, Mahungu T, Hendra H, Egan D, Siccardi M, et al. Integration of population pharmacokinetics and pharmacogenetics: an aid to optimal nevirapine dose selection in HIV-infected individuals. J Antimicrob Chemother. 2011;66(6):1332–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bertrand J, Chou M, Richardson DM, Verstuyft C, Leger PD, Mentre F, et al. Multiple genetic variants predict steady-state nevirapine clearance in HIV-infected Cambodians. Pharmacogenet Genomics. 2012;22(12):868–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mahungu T, Smith C, Turner F, Egan D, Youle M, Johnson M, et al. Cytochrome P450 2B6 516G→T is associated with plasma concentrations of nevirapine at both 200 mg twice daily and 400 mg once daily in an ethnically diverse population. HIV Med. 2009;10(5):310–7.

    Article  CAS  PubMed  Google Scholar 

  35. Liptrott NJ, Pushpakom S, Wyen C, Fatkenheuer G, Hoffmann C, Mauss S, et al. Association of ABCC10 polymorphisms with nevirapine plasma concentrations in the German Competence Network for HIV/AIDS. Pharmacogenet Genomics. 2012;22(1):10–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brown KC, Hosseinipour MC, Hoskins JM, Thirumaran RK, Tien HC, Weigel R, et al. Exploration of CYP450 and drug transporter genotypes and correlations with nevirapine exposure in Malawians. Pharmacogenomics. 2012;13(1):113–21.

    Article  CAS  PubMed  Google Scholar 

  37. Wang H, Tompkins LM. CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme. Curr Drug Metab. 2008;9(7):598–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsuchiya K, Gatanaga H, Tachikawa N, Teruya K, Kikuchi Y, Yoshino M, et al. Homozygous CYP2B6 *6 (Q172H and K262R) correlates with high plasma efavirenz concentrations in HIV-1 patients treated with standard efavirenz-containing regimens. Biochem Biophys Res Commun. 2004;319(4):1322–6.

    Article  CAS  PubMed  Google Scholar 

  39. Sukasem C, Cressey TR, Prapaithong P, Tawon Y, Pasomsub E, Srichunrusami C, et al. Pharmacogenetic markers of CYP2B6 associated with efavirenz plasma concentrations in HIV-1 infected Thai adults. Br J Clin Pharmacol. 2012;74(6):1005–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Calcagno A, D’Avolio A, Simiele M, Cusato J, Rostagno R, Libanore V, et al. Influence of CYP2B6 and ABCB1 SNPs on nevirapine plasma concentrations in Burundese HIV-positive patients using dried sample spot devices. Br J Clin Pharmacol. 2012;74(1):134–40.

    Article  CAS  PubMed  Google Scholar 

  41. Owen A, Goldring C, Morgan P, Chadwick D, Park BK, Pirmohamed M. Relationship between the C3435T and G2677T(A) polymorphisms in the ABCB1 gene and P-glycoprotein expression in human liver. Br J Clin Pharmacol. 2005;59(3):365–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fellay J, Marzolini C, Meaden ER, Back DJ, Buclin T, Chave JP, et al. Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet. 2002;359(9300):30–6.

    Article  CAS  PubMed  Google Scholar 

  43. Savic RM, Barrail-Tran A, Duval X, Nembot G, Panhard X, Descamps D, et al. Effect of adherence as measured by MEMS, ritonavir boosting, and CYP3A5 genotype on atazanavir pharmacokinetics in treatment-naive HIV-infected patients. Clin Pharmacol Ther. 2012;92(5):575–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Anderson PL, Lamba J, Aquilante CL, Schuetz E, Fletcher CV. Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV-infected adults: a pilot study. J Acquir Immune Defic Syndr. 2006;42(4):441–9.

    Article  CAS  PubMed  Google Scholar 

  45. Lubomirov R, Arab-Alameddine M, Rotger M, Fayet-Mello A, Martinez R, Guidi M, et al. Pharmacogenetics-based population pharmacokinetic analysis of etravirine in HIV-1 infected individuals. Pharmacogenet Genomics. 2013;23(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  46. Elens L, van Gelder T, Hesselink DA, Haufroid V, van Schaik RH. CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics. 2012;14(1):47–62.

    Article  CAS  Google Scholar 

  47. di Iulio J, Fayet A, Arab-Alameddine M, Rotger M, Lubomirov R, Cavassini M, et al. In vivo analysis of efavirenz metabolism in individuals with impaired CYP2A6 function. Pharmacogenet Genomics. 2009;19(4):300–9.

    Article  PubMed  CAS  Google Scholar 

  48. Haas DW, Kwara A, Richardson DM, Baker P, Papageorgiou I, Acosta EP, et al. Secondary metabolism pathway polymorphisms and plasma efavirenz concentrations in HIV-infected adults with CYP2B6 slow metabolizer genotypes. J Antimicrob Chemother. 2014;69(8):2175–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wenning LA, Petry AS, Kost JT, Jin B, Breidinger SA, DeLepeleire I, et al. Pharmacokinetics of raltegravir in individuals with UGT1A1 polymorphisms. Clin Pharmacol Ther. 2009;85(6):623–7.

    Article  CAS  PubMed  Google Scholar 

  50. Desta Z, Saussele T, Ward B, Blievernicht J, Li L, Klein K, et al. Impact of CYP2B6 polymorphism on hepatic efavirenz metabolism in vitro. Pharmacogenomics. 2007;8(6):547–58.

    Article  CAS  PubMed  Google Scholar 

  51. Russo G, Paganotti GM, Soeria-Atmadja S, Haverkamp M, Ramogola-Masire D, Vullo V, et al. Pharmacogenetics of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in resource-limited settings: Influence on antiretroviral therapy response and concomitant anti-tubercular, antimalarial and contraceptive treatments. Infect Genet Evol. 2015;37:192–207.

    Article  PubMed  CAS  Google Scholar 

  52. ter Heine R, Scherpbier HJ, Crommentuyn KM, Bekker V, Beijnen JH, Kuijpers TW, et al. A pharmacokinetic and pharmacogenetic study of efavirenz in children: dosing guidelines can result in subtherapeutic concentrations. Antivir Ther. 2008;13(6):779–87.

    PubMed  Google Scholar 

  53. Marzolini C, Telenti A, Decosterd LA, Greub G, Biollaz J, Buclin T. Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS. 2001;15(1):71–5.

    Article  CAS  PubMed  Google Scholar 

  54. Rodriguez-Novoa S, Barreiro P, Rendon A, Jimenez-Nacher I, Gonzalez-Lahoz J, Soriano V. Influence of 516G>T polymorphisms at the gene encoding the CYP450-2B6 isoenzyme on efavirenz plasma concentrations in HIV-infected subjects. Clin Infect Dis. 2005;40(9):1358–61.

    Article  CAS  PubMed  Google Scholar 

  55. Torno MS, Witt MD, Saitoh A, Fletcher CV. Successful use of reduced-dose efavirenz in a patient with human immunodeficiency virus infection: case report and review of the literature. Pharmacotherapy. 2008;28(6):782–7.

    Article  CAS  PubMed  Google Scholar 

  56. Sukasem C, Manosuthi W, Koomdee N, Santon S, Jantararoungtong T, Prommas S, et al. Low level of efavirenz in HIV-1-infected Thai adults is associated with the CYP2B6 polymorphism. Infection. 2014;42(3):469–74.

    Article  CAS  PubMed  Google Scholar 

  57. Zanger UM, Klein K, Saussele T, Blievernicht J, Hofmann MH, Schwab M. Polymorphic CYP2B6: molecular mechanisms and emerging clinical significance. Pharmacogenomics. 2007;8(7):743–59.

    Article  CAS  PubMed  Google Scholar 

  58. Elens L, Vandercam B, Yombi JC, Lison D, Wallemacq P, Haufroid V. Influence of host genetic factors on efavirenz plasma and intracellular pharmacokinetics in HIV-1-infected patients. Pharmacogenomics. 2010;11(9):1223–34.

    Article  CAS  PubMed  Google Scholar 

  59. Dickinson L, Amin J, Else L, Boffito M, Egan D, Owen A, et al. Comprehensive pharmacokinetic, pharmacodynamic and pharmacogenetic evaluation of once-daily efavirenz 400 and 600 mg in treatment-naive HIV-infected patients at 96 weeks: results of the ENCORE1 Study. Clin Pharmacokinet. 2016;55(7):861–73.

    Article  CAS  PubMed  Google Scholar 

  60. Erickson DA, Mather G, Trager WF, Levy RH, Keirns JJ. Characterization of the in vitro biotransformation of the HIV-1 reverse transcriptase inhibitor nevirapine by human hepatic cytochromes P-450. Drug Metab Dispos. 1999;27(12):1488–95.

    CAS  PubMed  Google Scholar 

  61. Lehr T, Yuan J, Hall D, Zimdahl-Gelling H, Schaefer HG, Staab A, et al. Integration of absorption, distribution, metabolism, and elimination genotyping data into a population pharmacokinetic analysis of nevirapine. Pharmacogenet Genomics. 2011;21(11):721–30.

    Article  CAS  PubMed  Google Scholar 

  62. Chen J, Sun J, Ma Q, Yao Y, Wang Z, Zhang L, et al. CYP2B6 polymorphism and nonnucleoside reverse transcriptase inhibitor plasma concentrations in Chinese HIV-infected patients. Ther Drug Monit. 2010;32(5):573–8.

    Article  CAS  PubMed  Google Scholar 

  63. Rohrich CR, Drogemoller BI, Ikediobi O, van der Merwe L, Grobbelaar N, Wright GE, et al. CYP2B6*6 and CYP2B6*18 predict long-term efavirenz exposure measured in hair samples in HIV-positive South African women. AIDS Res Hum Retroviruses. 2016;32(6):529–38.

    Article  PubMed  CAS  Google Scholar 

  64. Cressey TR, Lallemant M. Pharmacogenetics of antiretroviral drugs for the treatment of HIV-infected patients: an update. Infect Genet Evol. 2007;7(2):333–42.

    Article  CAS  PubMed  Google Scholar 

  65. Johnson DH, Venuto C, Ritchie MD, Morse GD, Daar ES, McLaren PJ, et al. Genomewide association study of atazanavir pharmacokinetics and hyperbilirubinemia in AIDS Clinical Trials Group protocol A5202. Pharmacogenet Genomics. 2014;24(4):195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Calcagno A, Tettoni MC, Simiele M, Trentini L, Montrucchio C, D’Avolio A, et al. Pharmacokinetics of 400 mg of raltegravir once daily in combination with atazanavir/ritonavir plus two nucleoside/nucleotide reverse transcriptase inhibitors. J Antimicrob Chemother. 2013;68(2):482–4.

    Article  CAS  PubMed  Google Scholar 

  67. Barcelo C, Gaspar F, Aouri M, Panchaud A, Rotger M, Guidi M, et al. Population pharmacokinetic analysis of elvitegravir and cobicistat in HIV-1-infected individuals. J Antimicrob Chemother. 2016;71(7):1933–42.

    Article  CAS  PubMed  Google Scholar 

  68. Mutlib AE, Chen H, Nemeth GA, Markwalder JA, Seitz SP, Gan LS, et al. Identification and characterization of efavirenz metabolites by liquid chromatography/mass spectrometry and high field NMR: species differences in the metabolism of efavirenz. Drug Metab Dispos. 1999;27(11):1319–33.

    CAS  PubMed  Google Scholar 

  69. Kiser JJ, Aquilante CL, Anderson PL, King TM, Carten ML, Fletcher CV. Clinical and genetic determinants of intracellular tenofovir diphosphate concentrations in HIV-infected patients. J Acquir Immune Defic Syndr. 2008;47(3):298–303.

    Article  CAS  PubMed  Google Scholar 

  70. Lubomirov R, di Iulio J, Fayet A, Colombo S, Martinez R, Marzolini C, et al. ADME pharmacogenetics: investigation of the pharmacokinetics of the antiretroviral agent lopinavir coformulated with ritonavir. Pharmacogenet Genomics. 2010;20(4):217–30.

    CAS  PubMed  Google Scholar 

  71. Rungtivasuwan K, Avihingsanon A, Thammajaruk N, Mitruk S, Burger DM, Ruxrungtham K, et al. Influence of ABCC2 and ABCC4 polymorphisms on tenofovir plasma concentrations in Thai HIV-infected patients. Antimicrob Agents Chemother. 2015;59(6):3240–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kiser JJ, Fletcher CV, Flynn PM, Cunningham CK, Wilson CM, Kapogiannis BG, et al. Pharmacokinetics of antiretroviral regimens containing tenofovir disoproxil fumarate and atazanavir-ritonavir in adolescents and young adults with human immunodeficiency virus infection. Antimicrob Agents Chemother. 2008;52(2):631–7.

    Article  CAS  PubMed  Google Scholar 

  73. Calcagno A, Cusato J, Marinaro L, Trentini L, Alcantarini C, Mussa M, et al. Clinical pharmacology of tenofovir clearance: a pharmacokinetic/pharmacogenetic study on plasma and urines. Pharmacogenomics J. [Epub 6 Oct 2015].

  74. Tsuchiya K, Hayashida T, Hamada A, Kato S, Oka S, Gatanaga H. Low raltegravir concentration in cerebrospinal fluid in patients with ABCG2 genetic variants. J Acquir Immune Defic Syndr. 2014;66(5):484–6.

    Article  CAS  PubMed  Google Scholar 

  75. Bonora S, Rusconi S, Calcagno A, Bracchi M, Vigano O, Cusato J, et al. Successful pharmacogenetics-based optimization of unboosted atazanavir plasma exposure in HIV-positive patients: a randomized, controlled, pilot study (the REYAGEN study). J Antimicrob Chemother. 2015;70(11):3096–9.

    Article  CAS  PubMed  Google Scholar 

  76. Kile DA, MaWhinney S, Aquilante CL, Rower JE, Castillo-Mancilla JR, Anderson PL. A population pharmacokinetic-pharmacogenetic analysis of atazanavir. AIDS Res Hum Retroviruses. 2012;28(10):1227–34.

    Article  CAS  PubMed  Google Scholar 

  77. Castillo-Mancilla JR, Aquilante CL, Wempe MF, Smeaton LM, Firnhaber C, LaRosa AM, et al. Pharmacogenetics of unboosted atazanavir in HIV-infected individuals in resource-limited settings: a sub-study of the AIDS Clinical Trials Group (ACTG) PEARLS study (NWCS 342). J Antimicrob Chemother. 2016;71(6):1609–18.

    Article  CAS  PubMed  Google Scholar 

  78. D’Avolio A, Carcieri C, Cusato J, Simiele M, Calcagno A, Allegra S, et al. Intracellular accumulation of atazanavir/ritonavir according to plasma concentrations and OATP1B1, ABCB1 and PXR genetic polymorphisms. J Antimicrob Chemother. 2014;69(11):3061–6.

    Article  PubMed  CAS  Google Scholar 

  79. Siccardi M, D’Avolio A, Nozza S, Simiele M, Baietto L, Stefani FR, et al. Maraviroc is a substrate for OATP1B1 in vitro and maraviroc plasma concentrations are influenced by SLCO1B1 521 T>C polymorphism. Pharmacogenet Genomics. 2010;20(12):759–65.

    CAS  PubMed  Google Scholar 

  80. Stebbing J, Bower M. Comparative pharmacogenomics of antiretroviral and cytotoxic treatments. Lancet Oncol. 2006;7(1):61–8.

    Article  CAS  PubMed  Google Scholar 

  81. Kannan P, John C, Zoghbi SS, Halldin C, Gottesman MM, Innis RB, et al. Imaging the function of P-glycoprotein with radiotracers: pharmacokinetics and in vivo applications. Clin Pharmacol Ther. 2009;86(4):368–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang D, Johnson AD, Papp AC, Kroetz DL, Sadee W. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet Genomics. 2005;15(10):693–704.

    Article  CAS  PubMed  Google Scholar 

  83. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmoller J, Johne A, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA. 2000;97(7):3473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Marzolini C, Paus E, Buclin T, Kim RB. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther. 2004;75(1):13–33.

    Article  CAS  PubMed  Google Scholar 

  85. Stormer E, von Moltke LL, Perloff MD, Greenblatt DJ. Differential modulation of P-glycoprotein expression and activity by non-nucleoside HIV-1 reverse transcriptase inhibitors in cell culture. Pharm Res. 2002;19(7):1038–45.

    Article  PubMed  Google Scholar 

  86. Chan GN, Patel R, Cummins CL, Bendayan R. Induction of P-glycoprotein by antiretroviral drugs in human brain microvessel endothelial cells. Antimicrob Agents Chemother. 2013;57(9):4481–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Swart M, Ren Y, Smith P, Dandara C. ABCB1 4036A>G and 1236C>T polymorphisms affect plasma efavirenz levels in South African HIV/AIDS patients. Front Genet. 2012;3:236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ritchie MD, Haas DW, Motsinger AA, Donahue JP, Erdem H, Raffanti S, et al. Drug transporter and metabolizing enzyme gene variants and nonnucleoside reverse-transcriptase inhibitor hepatotoxicity. Clin Infect Dis. 2006;43(6):779–82.

    Article  CAS  PubMed  Google Scholar 

  89. Tsuchiya K, Hayashida T, Hamada A, Oka S, Gatanaga H. Brief report: high peak level of plasma raltegravir concentration in patients with ABCB1 and ABCG2 genetic variants. J Acquir Immune Defic Syndr. 2016;72(1):11–4.

    Article  CAS  PubMed  Google Scholar 

  90. Verstuyft C, Marcellin F, Morand-Joubert L, Launay O, Brendel K, Mentre F, et al. Absence of association between MDR1 genetic polymorphisms, indinavir pharmacokinetics and response to highly active antiretroviral therapy. AIDS. 2005;19(18):2127–31.

    Article  CAS  PubMed  Google Scholar 

  91. Rodriguez Novoa S, Barreiro P, Rendon A, Barrios A, Corral A, Jimenez-Nacher I, et al. Plasma levels of atazanavir and the risk of hyperbilirubinemia are predicted by the 3435C→T polymorphism at the multidrug resistance gene 1. Clin Infect Dis. 2006;42(2):291–5.

    Article  PubMed  Google Scholar 

  92. Rodriguez-Novoa S, Labarga P, Soriano V. Pharmacogenetics of tenofovir treatment. Pharmacogenomics. 2009;10(10):1675–85.

    Article  CAS  PubMed  Google Scholar 

  93. Kiser JJ, Carten ML, Aquilante CL, Anderson PL, Wolfe P, King TM, et al. The effect of lopinavir/ritonavir on the renal clearance of tenofovir in HIV-infected patients. Clin Pharmacol Ther. 2008;83(2):265–72.

    Article  CAS  PubMed  Google Scholar 

  94. Pushpakom SP, Liptrott NJ, Rodriguez-Novoa S, Labarga P, Soriano V, Albalater M, et al. Genetic variants of ABCC10, a novel tenofovir transporter, are associated with kidney tubular dysfunction. J Infect Dis. 2011;204(1):145–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Calcagno A, Cusato J, Marinaro L, Simiele M, Lucchiari M, Alcantarini C, et al. Tenofovir clearance is reduced in HIV-positive patients with subclinical tubular impairment. AIDS. 2016;30(6):915–20.

    Article  CAS  PubMed  Google Scholar 

  96. Zhang JC, Deng ZY, Wang Y, Xie F, Sun L, Zhang FX. Expression of breast cancer resistance protein in peripheral T cell subsets from HIV1infected patients with antiretroviral therapy. Mol Med Rep. 2014;10(2):939–46.

    CAS  PubMed  Google Scholar 

  97. Peroni RN, Di Gennaro SS, Hocht C, Chiappetta DA, Rubio MC, Sosnik A, et al. Efavirenz is a substrate and in turn modulates the expression of the efflux transporter ABCG2/BCRP in the gastrointestinal tract of the rat. Biochem Pharmacol. 2011;82(9):1227–33.

    Article  CAS  PubMed  Google Scholar 

  98. Moss DM, Neary M, Owen A. The role of drug transporters in the kidney: lessons from tenofovir. Front Pharmacol. 2014;5:248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Izzedine H, Thibault V, Valantin MA, Peytavin G, Schneider L, Benhamou Y. Tenofovir/probenecid combination in HIV/HBV-coinfected patients: how to escape Fanconi syndrome recurrence? AIDS. 2010;24(7):1078–9.

    Article  PubMed  Google Scholar 

  100. Hartkoorn RC, Kwan WS, Shallcross V, Chaikan A, Liptrott N, Egan D, et al. HIV protease inhibitors are substrates for OATP1A2, OATP1B1 and OATP1B3 and lopinavir plasma concentrations are influenced by SLCO1B1 polymorphisms. Pharmacogenet Genomics. 2010;20(2):112–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kohlrausch FB, de Cassia Estrela R, Barroso PF, Suarez-Kurtz G. The impact of SLCO1B1 polymorphisms on the plasma concentration of lopinavir and ritonavir in HIV-infected men. Br J Clin Pharmacol. 2010;69(1):95–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rakhmanina NY, Neely MN, Van Schaik RH, Gordish-Dressman HA, Williams KD, Soldin SJ, et al. CYP3A5, ABCB1, and SLCO1B1 polymorphisms and pharmacokinetics and virologic outcome of lopinavir/ritonavir in HIV-infected children. Ther Drug Monit. 2011;33(4):417–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schipani A, Egan D, Dickinson L, Davies G, Boffito M, Youle M, et al. Estimation of the effect of SLCO1B1 polymorphisms on lopinavir plasma concentration in HIV-infected adults. Antivir Ther. 2012;17(5):861–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang X, Tierney C, Albrecht M, Demeter LM, Morse G, DiFrancesco R, et al. Discordant associations between SLCO1B1 521T→C and plasma levels of ritonavir-boosted protease inhibitors in AIDS clinical trials group study A5146. Ther Drug Monit. 2013;35(2):209–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Cano-Soldado P, Lorrayoz IM, Molina-Arcas M, Casado FJ, Martinez-Picado J, Lostao MP, et al. Interaction of nucleoside inhibitors of HIV-1 reverse transcriptase with the concentrative nucleoside transporter-1 (SLC28A1). Antivir Ther. 2004;9(6):993–1002.

    CAS  PubMed  Google Scholar 

  106. Svard J, Spiers JP, Mulcahy F, Hennessy M. Nuclear receptor-mediated induction of CYP450 by antiretrovirals: functional consequences of NR1I2 (PXR) polymorphisms and differential prevalence in whites and sub-Saharan Africans. J Acquir Immune Defic Syndr. 2010;55(5):536–49.

    Article  PubMed  CAS  Google Scholar 

  107. Siccardi M, D’Avolio A, Baietto L, Gibbons S, Sciandra M, Colucci D, et al. Association of a single-nucleotide polymorphism in the pregnane X receptor (PXR 63396C→T) with reduced concentrations of unboosted atazanavir. Clin Infect Dis. 2008;47(9):1222–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schipani A, Siccardi M, D’Avolio A, Baietto L, Simiele M, Bonora S, et al. Population pharmacokinetic modeling of the association between 63396C→T pregnane X receptor polymorphism and unboosted atazanavir clearance. Antimicrob Agents Chemother. 2010;54(12):5242–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wyen C, Hendra H, Siccardi M, Platten M, Jaeger H, Harrer T, et al. Cytochrome P450 2B6 (CYP2B6) and constitutive androstane receptor (CAR) polymorphisms are associated with early discontinuation of efavirenz-containing regimens. J Antimicrob Chemother. 2011;66(9):2092–8.

    Article  CAS  PubMed  Google Scholar 

  110. Swart M, Whitehorn H, Ren Y, Smith P, Ramesar RS, Dandara C. PXR and CAR single nucleotide polymorphisms influence plasma efavirenz levels in South African HIV/AIDS patients. BMC Med Genet. 2012;13:112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cortes CP, Siccardi M, Chaikan A, Owen A, Zhang G, la Porte CJ. Correlates of efavirenz exposure in Chilean patients affected with human immunodeficiency virus reveals a novel association with a polymorphism in the constitutive androstane receptor. Ther Drug Monit. 2013;35(1):78–83.

    Article  CAS  PubMed  Google Scholar 

  112. Calcagno A, Cusato J, Simiele M, Motta I, Audagnotto S, Bracchi M, et al. High interpatient variability of raltegravir CSF concentrations in HIV-positive patients: a pharmacogenetic analysis. J Antimicrob Chemother. 2014;69(1):241–5.

    Article  CAS  PubMed  Google Scholar 

  113. McCollam PL, Crouch MA, Arnaud P. Caucasian versus African-American differences in orosomucoid: potential implications for therapy. Pharmacotherapy. 1998;18(3):620–6.

    CAS  PubMed  Google Scholar 

  114. Colombo S, Buclin T, Decosterd LA, Telenti A, Furrer H, Lee BL, et al. Orosomucoid (alpha1-acid glycoprotein) plasma concentration and genetic variants: effects on human immunodeficiency virus protease inhibitor clearance and cellular accumulation. Clin Pharmacol Ther. 2006;80(4):307–18.

    Article  CAS  PubMed  Google Scholar 

  115. Ngaimisi E, Mugusi S, Minzi O, Sasi P, Riedel KD, Suda A, et al. Effect of rifampicin and CYP2B6 genotype on long-term efavirenz autoinduction and plasma exposure in HIV patients with or without tuberculosis. Clin Pharmacol Ther. 2011;90(3):406–13.

    Article  CAS  PubMed  Google Scholar 

  116. Luetkemeyer AF, Rosenkranz SL, Lu D, Grinsztejn B, Sanchez J, Ssemmanda M, et al. Combined effect of CYP2B6 and NAT2 genotype on plasma efavirenz exposure during rifampin-based antituberculosis therapy in the STRIDE study. Clin Infect Dis. 2015;60(12):1860–3.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Calcagno A, Baietto L, Pagani N, Simiele M, Audagnotto S, D’Avolio A, et al. Voriconazole and atazanavir: a CYP2C19-dependent manageable drug–drug interaction. Pharmacogenomics. 2014;15(10):1281–6.

    Article  CAS  PubMed  Google Scholar 

  118. Aquilante CL, Kiser JJ, Anderson PL, Christians U, Kosmiski LA, Daily EB, et al. Influence of SLCO1B1 polymorphisms on the drug–drug interaction between darunavir/ritonavir and pravastatin. J Clin Pharmacol. 2012;52(11):1725–38.

    Article  CAS  PubMed  Google Scholar 

  119. Dickinson L, Amin J, Else L, Boffito M, Egan D, Owen A, et al. Pharmacokinetic and pharmacodynamic comparison of once-daily efavirenz (400 mg vs. 600 mg) in treatment-naive HIV-infected patients: results of the ENCORE1 study. Clin Pharmacol Ther. 2015;98(4):406–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Carey D, Puls R, Amin J, Losso M, Phanupak P, Foulkes S, et al. Efficacy and safety of efavirenz 400 mg daily versus 600 mg daily: 96-week data from the randomised, double-blind, placebo-controlled, non-inferiority ENCORE1 study. Lancet Infect Dis. 2015;15(7):793–802.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Calcagno.

Ethics declarations

Conflict of interest

Andrea Calcagno has received travel grants or speaker’s honoraria from Abbott, Bristol–Myers Squibb (BMS), Merck Sharp & Dohme (MSD) and Janssen-Cilag. Stefano Bonora has received grants, travel grants and consultancy fees from Abbott, Boehringer–Inghelheim, BMS, Gilead-Sciences, GlaxoSmithKline, MSD, Pfizer and Janssen-Cilag. Jessica Cusato and Antonio D’Avolio have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calcagno, A., Cusato, J., D’Avolio, A. et al. Genetic Polymorphisms Affecting the Pharmacokinetics of Antiretroviral Drugs. Clin Pharmacokinet 56, 355–369 (2017). https://doi.org/10.1007/s40262-016-0456-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-016-0456-6

Keywords

Navigation