Skip to main content

Advertisement

Log in

Influence of CYP2B6 516G>T polymorphism and interoccasion variability (IOV) on the population pharmacokinetics of efavirenz in HIV-infected South African children

  • Clinical Trial
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

To investigate the influence of CYP2B6 516G>T polymorphism, as a covariate, and of interoccasion variability (IOV) on the oral clearance (CL/F) of efavirenz (EFV) in treatment-naïve black South African children over a period of 24 months post-antiretroviral therapy (ART) initiation.

Methods

HIV-infected black children (n = 60, aged 3–16 years), with no prior exposure to ART, eligible to commence ART and attending an outpatient clinic were enrolled into this study. Blood samples were taken at mid-dose interval at 1, 3, 6, 12, 18 and 24 months post-ART initiation. EFV plasma samples were determined with an adapted and validated LC/MS/MS method. Genotyping of the CYP2B6 G516T single nucleotide polymorphism (SNP) was performed using polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP). NONMEM was used for the population pharmacokinetic modelling.

Results

EFV concentrations below 1 μg/mL accounted for 18% (116/649), EFV concentrations >4 μg/mL accounted for 29.5% (192/649) and concentrations within the therapeutic range (1–4 μg/mL) represented 52.5% (341/649) of all the samples determined. The covariates age, weight and CYP2B6 G516Tgenotype were included in the final model with population estimates for CL/F determined as 2.46, 4.60 and 7.33 L/h for the T/T, G/T and G/G genotype groups respectively.

Conclusions

The inclusion of both age and weight to predict accurate EFV CL values for the respective genotype groups within this paediatric population was required, whereas the addition of gender and body surface area did not improve the predictions. The importance of introducing IOV in a PK model for a longitudinal study with sparsely collected data was again highlighted by this investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. National Department of Health (2005) Guidelines for the management of HIV-infected children. http://www.doh.gov.za/docs/factsheets/guidelines/hiv/index.html

  2. National Department of Health (2010) Guidelines for the management of HIV-infected children. http://www.searchitech.org/pdf/p06-db/db-50797.pdf

  3. Bristol-Myers Squibb (May 2004) Stocrin (efavirenz) product information leaflet. http://packageinserts.bms.com/pi/pi_sustiva.pdf

  4. Flexner C (2006) Antiretroviral agents and treatment of HIV infection. In: Brunton LL, Lazo JS, Parker KL (eds) Goodman & Gilman’s The pharmacological basis of therapeutics, 11th edn. McGraw-Hill Medical, New York, p 1273

    Google Scholar 

  5. Aarnoutse RE, Schapiro JM, Boucher CA, Hekster YA, Burger DM (2003) Therapeutic drug monitoring: an aid to optimising response to antiretroviral drugs? Drugs 63:741–753

    Article  PubMed  CAS  Google Scholar 

  6. Kwara A, Lartey M, Sagoe KW, Rzek NL, Court MH (2009) CYP2B6 (c.516G–>T) and CYP2A6 (*9B and/or *17) polymorphisms are independent predictors of efavirenz plasma concentrations in HIV-infected patients. Br J Clin Pharmacol 67:427–436

    Article  PubMed  CAS  Google Scholar 

  7. di Iulio J, Fayet A, Arab-Alameddine M, Rotger M, Lubomirov R, Cavassini M, Furrer H, Gunthard HF, Colombo S, Csajka C, Eap CB, Decosterd LA, Telenti A, Swiss HIV Cohort Study (2009) In vivo analysis of efavirenz metabolism in individuals with impaired CYP2A6 function. Pharmacogenet Genomics 19:300–309

    Article  PubMed  Google Scholar 

  8. Fraaij PL, Rakhmanina N, Burger DM, de Groot R (2004) Therapeutic drug monitoring in children with HIV/AIDS. Ther Drug Monit 26:122–126

    Article  PubMed  Google Scholar 

  9. Fraaij PL, van Kampen JJ, Burger DM, de Groot R (2005) Pharmacokinetics of antiretroviral therapy in HIV-1-infected children. Clin Pharmacokinet 44:935–956

    Article  PubMed  CAS  Google Scholar 

  10. King JR, Kimberlin DW, Aldrovandi GM, Acosta EP (2002) Antiretroviral pharmacokinetics in the paediatric population: a review. Clin Pharmacokinet 41:1115–1133

    Article  PubMed  CAS  Google Scholar 

  11. Ngaimisi E, Mugusi S, Minzi OM, Sasi P, Riedel K, Suda A, Ueda N, Janabi M, Mugusi F, Haefeli WE, Burhenne J, Aklillu E (2010) Long-term efavirenz autoinduction and its effect on plasma exposure in HIV patients. Clin Pharmacol Ther 88:676–684

    Article  PubMed  CAS  Google Scholar 

  12. Ward BA, Gorski JC, Jones DR, Hall SD, Flockhart DA, Desta Z (2003) The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J Pharmacol Exp Ther 306:287–300

    Article  PubMed  CAS  Google Scholar 

  13. Adkins JC, Noble S (1998) Efavirenz. Drugs 56:1055–1064

    Article  PubMed  CAS  Google Scholar 

  14. Starr SE, Fletcher CV, Spector SA, Brundage RC, Yong FH, Douglas SD, Flynn PM, Kline MW (2002) Efavirenz liquid formulation in human immunodeficiency virus-infected children. Pediatr Infect Dis J 21:659–663

    Article  PubMed  Google Scholar 

  15. ter Heine R, Scherpbier HJ, Crommentuyn KML, Bekker V, Beijnen JH, Kuijpers TW, Huitema ADR (2008) A pharmacokinetic and pharmacogenetic study of efavirenz in children: dosing guidelines can result in subtherapeutic concentrations. Antivir Ther 13:779–787

    PubMed  Google Scholar 

  16. Gulick RM (2006) Adherence to antiretroviral therapy: how much is enough? Clin Infect Dis 43:942–944

    Article  PubMed  Google Scholar 

  17. King E, Seeskin EP, Obholz K, O’Loughlin Gross T (2009) HIV/AIDS annual update 2009. Based on the proceedings of the 19th Annual Clinical Care Options HIV Symposium, Miami, Florida. http://www.clinicaloptions.com/ccohiv2009

  18. Hirt D, Urien S, Olivier M, Peyriere H, Nacro B, Diagbouga S, Zoure E, Rouet F, Hien H, Msellati P, Van De Perre P, Treluyer JM (2009) Is the recommended dose of efavirenz optimal in young West African human immunodeficiency virus-infected children? Antimicrob Agents Chemother 53:4407–4413

    Article  PubMed  CAS  Google Scholar 

  19. von Hentig N, Koenigs C, Elanjikal S, Linde R, Dunsch D, Kreuz W, Funk MB (2006) Need for therapeutic drug monitoring in HIV-1 infected children receiving efavirenz doses according to international guidelines. Eur J Med Res 11:377–380

    Google Scholar 

  20. Ribaudo HJ, Haas DW, Tierney C, Kim RB, Wilkinson GR, Gulick RM, Clifford DB, Marzolini C, Fletcher CV, Tashima KT, Kuritzkes DR, Acosta EP (2006) Pharmacogenetics of plasma efavirenz exposure after treatment discontinuation: an adult AIDS clinical trials group study. Clin Infect Dis 42:401–407

    Article  PubMed  CAS  Google Scholar 

  21. Csajka C, Marzolini C, Fattinger K, Decosterd LA, Fellay J, Telenti A, Biollaz J, Buclin T (2003) Population pharmacokinetics and effects of efavirenz in patients with human immunodeficiency virus infection. Clin Pharmacol Ther 73:20–30

    Article  PubMed  CAS  Google Scholar 

  22. Marzolini C, Telenti A, Decosterd LA, Greub G, Biollaz J, Buclin T (2001) Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS 15:71–75

    Article  PubMed  CAS  Google Scholar 

  23. Pereira SA, Branco T, Caixas U, Corte-Real RM, Germano I, Lampreia F, Monteiro EC (2008) Intra-individual variability in efavirenz plasma concentrations supports therapeutic drug monitoring based on quarterly sampling in the first year of therapy. Ther Drug Monit 30:60–66

    Article  PubMed  CAS  Google Scholar 

  24. Stahle L, Moberg L, Svensson JO, Sonnerborg A (2004) Efavirenz plasma concentrations in HIV-infected patients: inter- and intraindividual variability and clinical effects. Ther Drug Monit 26:267–270

    Article  PubMed  CAS  Google Scholar 

  25. Viljoen M, Gous H, Kruger HS, Riddick A, Meyers TM, Rheeders M (2010) Efavirenz plasma concentrations at 1, 3, and 6 months post-antiretroviral therapy initiation in HIV type 1-infected South African children. AIDS Res Hum Retroviruses 26:613–619

    Article  PubMed  CAS  Google Scholar 

  26. Telenti A, Zanger UM (2008) Pharmacogenetics of anti-HIV drugs. Annu Rev Pharmacol Toxicol 48:227–256

    Article  PubMed  CAS  Google Scholar 

  27. Ekhart C, Doodeman VD, Rodenhuis S, Smits PHM, Beijnen JH, Huitema ADR (2009) Polymorphisms of drug-metabolizing enzymes (GST, CYP2B6 and CYP3A) affect the pharmacokinetics of thiotepa and tepa. Br J Clin Pharmacol 67:50–60

    Article  PubMed  CAS  Google Scholar 

  28. Cressey TR, Lallemant M (2006) Pharmacogenetics of antiretroviral drugs for the treatment of HIV-infected patients: an update. Infect Genet Evol 7:333–342

    Article  PubMed  Google Scholar 

  29. Nyakutira C, Roshammar D, Chigutsa E, Chonzi P, Ashton M, Nhachi C, Masimirembwa C (2008) High prevalence of CYP2B6 516G-->T(*6) variant and effect on the population pharmacokinetics of efavirenz in HIV/AIDS outpatients in Zimbabwe. Eur J Clin Pharmacol 64:357–365

    Article  PubMed  CAS  Google Scholar 

  30. Cabrera SE, Santos D, Valverde MP, Domínguez-Gil A, González F, Luna G, García MJ (2009) Influence of the cytochrome P450 2B6 genotype on population pharmacokinetics of efavirenz in human immunodeficiency virus patients. Antimicrob Agents Chemother 53:2791–2798

    Article  PubMed  CAS  Google Scholar 

  31. Saitoh A, Fletcher CV, Brundage R, Alvero C, Fenton T, Hsia K, Spector SA (2007) Efavirenz pharmacokinetics in HIV-1-infected children are associated with CYP2B6-G516T polymorphism. J Acquir Immune Defic Syndr 45:280–285

    PubMed  CAS  Google Scholar 

  32. Haas DW, Ribaudo HJ, Kim RB, Tierney C, Wilkinson GR, Gulick RM, Clifford DB, Hulgan T, Marzolini C, Acosta EP (2004) Pharmacogenetics of efavirenz and central nervous system side effects: an adult AIDS clinical trials group study. AIDS 18:2391–2400

    PubMed  CAS  Google Scholar 

  33. Gatanaga H, Oka S (2009) Successful genotype-tailored treatment with small-dose efavirenz. AIDS 23:433–434

    Article  PubMed  Google Scholar 

  34. Puthanakit T, Tanpaiboon P, Aurpibul L, Cressey TR, Sirisanthana V (2009) Plasma efavirenz concentrations and the association with CYP2B6-516G >T polymorphism in HIV-infected Thai children. Antivir Ther 14:315–320

    PubMed  CAS  Google Scholar 

  35. Kappelhoff BS, van Leth F, Robinson PA, MacGregor TR, Baraldi E, Montella F, Uip DE, Thompson MA, Russell DB, Lange JM, Beijnen JH, Huitema AD, 2NN Study Group (2005) Are adverse events of nevirapine and efavirenz related to plasma concentrations? Antivir Ther 10:489–498

    PubMed  CAS  Google Scholar 

  36. Ramachandran G, Ramesh K, Hemanth Kumar AK, Jagan I, Vasantha M, Padmapriyadarsini C, Narendran G, Rajasekaran S, Swaminathan S (2009) Association of high T allele frequency of CYP2B6 G516T polymorphism among ethnic south Indian HIV-infected patients with elevated plasma efavirenz and nevirapine. J Antimicrob Chemother 63:841–843

    Article  PubMed  CAS  Google Scholar 

  37. Rotger M, Colombo S, Furrer H, Bleiber G, Buclin T, Lee BL, Keiser O, Biollaz J, Decosterd L, Telenti A (2005) Influence of CYP2B6 polymorphism on plasma and intracellular concentrations and toxicity of efavirenz and nevirapine in HIV-infected patients. Pharmacogenet Genomics 15:1–5

    Article  PubMed  CAS  Google Scholar 

  38. Kappelhoff BS, van Leth F, MacGregor TR, Lange J, Beijnen JH, Huitema ADR (2005) Nevirapine and efavirenz pharmacokinetics and covariate analysis in the 2NN study. Antivir Ther 10:145–155

    PubMed  CAS  Google Scholar 

  39. Ren Y, Nuttall JJ, Egbers C, Eley BS, Meyers TM, Smith PJ, Maartens G, McIlleron HM (2007) High prevalence of subtherapeutic plasma concentrations of efavirenz in children. J Acquir Immune Defic Syndr 45:133–136

    Article  PubMed  CAS  Google Scholar 

  40. Gatanaga H, Hayashida T, Tsuchiya K, Yoshino M, Kuwahara T, Tsukada H, Fujimoto K, Sato I, Ueda M, Horiba M, Hamaguchi M, Yamamoto M, Takata N, Kimura A, Koike T, Gejyo F, Matsushita S, Shirasaka T, Kimura S, Oka S (2007) Successful efavirenz dose reduction in HIV type 1-infected individuals with cytochrome P450 2B6 *6 and *26. Clin Infect Dis 45:1230–1237

    Article  PubMed  CAS  Google Scholar 

  41. Barrett JS, Joshi AS, Chai M, Ludden TM, Fiske WD, Pieniaszek HJ Jr (2002) Population pharmacokinetic meta-analysis with efavirenz. Int J Clin Pharmacol Ther 40:507–519

    PubMed  CAS  Google Scholar 

  42. Pfister M, Labbé L, Hammer SM, Mellors J, Bennett KK, Rosenkranz S, Sheiner LB (2003) Population pharmacokinetics and pharmacodynamics of efavirenz, nelfinavir, and indinavir: adult AIDS clinical trial group study 398. Antimicrob Agents Chemother 47:130–137

    Article  PubMed  CAS  Google Scholar 

  43. Kappelhoff BS, Huitema AD, Yalvac Z, Prins JM, Mulder JW, Meenhorst PL, Beijnen JH (2005) Population pharmacokinetics of efavirenz in an unselected cohort of HIV-1-infected individuals. Clin Pharmacokinet 44:849–861

    Article  PubMed  CAS  Google Scholar 

  44. Lang T, Klein K, Fischer J, Nussler AK, Neuhaus P, Hofmann U, Eichelbaum M, Schwab M, Zanger UM (2001) Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics 11:399–415

    Article  PubMed  CAS  Google Scholar 

  45. Beal SL, Sheiner LB, Boeckman AJ (1986–2006) Nonlinear mixed effects model. NONMEM users guide—part V, version VI, level 1.1. NONMEM Project Group, UCSF, San Francisco

  46. Jonsson EN, Karlsson MO (1999) Xpose–an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Programs Biomed 58:51–64

    Article  PubMed  CAS  Google Scholar 

  47. Lindbom L, Ribbing J, Jonsson EN (2004) Perl-speaks-NONMEM (PsN)–a Perl module for NONMEM related programming. Comput Methods Programs Biomed 75:85–94

    Article  PubMed  Google Scholar 

  48. R Foundation for Statistical Computing (2010) R, a language and environment for statistical computing. http://www.R-project.org

  49. Wade JR, Kelman AW, Howie CA, Whiting B (1993) Effect of misspecification of the absorption process on subsequent parameter estimation in population analysis. J Pharmacokinet Biopharm 21(2):209–222

    Article  PubMed  CAS  Google Scholar 

  50. Karlsson MO, Sheiner LB (1993) The importance of modeling interoccasion variability in population pharmacokinetic analyses. J Pharmacokinet Biopharm 21:735–750

    Article  PubMed  CAS  Google Scholar 

  51. Holford NH (1996) A size standard for pharmacokinetics. Clin Pharmacokinet 30:329–332

    Article  PubMed  CAS  Google Scholar 

  52. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO (2011) Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J 13(2):143–151

    Article  PubMed  Google Scholar 

  53. Villani P, Regazzi MB, Castelli F, Viale P, Torti C, Seminari E, Maserati R (1999) Pharmacokinetics of efavirenz (EFV) alone and in combination therapy with nelfinavir (NFV) in HIV-1 infected patients. Br J Clin Pharmacol 48:712–715

    Article  PubMed  CAS  Google Scholar 

  54. Burger D, van der Heiden I, la Porte C, van der Ende M, Groeneveld P, Richter C, Koopmans P, Kroon F, Sprenger H, Lindemans J, Schenk P, van Schaik R (2006) Interpatient variability in the pharmacokinetics of the HIV non-nucleoside reverse transcriptase inhibitor efavirenz: the effect of gender, race, and CYP2B6 polymorphism. Br J Clin Pharmacol 61:148–154

    Article  PubMed  CAS  Google Scholar 

  55. Hoody DW, Fletcher CV (2003) Pharmacology considerations for antiretroviral therapy in human immunodeficiency virus (HIV)-infected children. Semin Pediatr Infect Dis 14:286–294

    Article  PubMed  Google Scholar 

  56. Wintergerst U, Hoffmann F, Jansson A, Notheis G, Huss K, Kurowski M, Burger D (2008) Antiviral efficacy, tolerability and pharmacokinetics of efavirenz in an unselected cohort of HIV-infected children. J Antimicrob Chemother 61:1336–1339

    Article  PubMed  CAS  Google Scholar 

  57. Fletcher CV, Brundage RC, Fenton T, Alvero CG, Powell C, Mofenson LM, Spector SA (2008) Pharmacokinetics and pharmacodynamics of efavirenz and nelfinavir in HIV-infected children participating in an area-under-the-curve controlled trial. Clin Pharmacol Ther 83:300–306

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

M. Viljoen received a Thuthuka research grant [North-West University and the National Research Foundation (NRF)] and a self-initiative grant from the Medical Research Council (MRC). T.M. Meyers is a Fogarty fellow supported by grants 5U2RTW007370 and 5U2RTW007373. The authors would like to thank the research staff of the Harriet Shezi Children’s Clinic. We are grateful to all study participants and their caregivers who have contributed to this study.

Conflict of interest

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Viljoen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viljoen, M., Karlsson, M.O., Meyers, T.M. et al. Influence of CYP2B6 516G>T polymorphism and interoccasion variability (IOV) on the population pharmacokinetics of efavirenz in HIV-infected South African children. Eur J Clin Pharmacol 68, 339–347 (2012). https://doi.org/10.1007/s00228-011-1148-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-011-1148-7

Keywords

Navigation