Skip to main content
Log in

A Comprehensive Review of Novel Drug–Disease Models in Diabetes Drug Development

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, which affects millions of people worldwide. The disease is characterized by chronically elevated blood glucose concentrations (hyperglycaemia), which result in comorbidities and multi-organ dysfunction. This is due to a gradual loss of glycaemic control as a result of increasing insulin resistance, as well as decreasing β-cell function. The objective of T2DM drug interventions is, therefore, to reduce fasting and postprandial blood glucose concentrations to normal, healthy levels without hypoglycaemia. Several classes of novel antihyperglycaemic drugs with various mechanisms of action have been developed over the past decades or are currently under clinical development. The development of these drugs is routinely supported by the application of pharmacokinetic/pharmacodynamic modelling and simulation approaches. They integrate information on the drug’s pharmacokinetics, clinically relevant biomarker information and disease progression into a single, unifying approach, which can be used to inform clinical study design, dose selection and drug labelling. The objective of this review is to provide a comprehensive overview of the quantitative approaches that have been reported since the 2008 review by Landersdorfer and Jusko in an increasing order of complexity, starting with glucose homeostasis models. Each of the presented approaches is discussed with respect to its strengths and limitations, and respective knowledge gaps are highlighted as potential opportunities for future drug–disease model development in the area of T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schmidt S, Post TM, Boroujerdi M, Van Kesteren C, Ploeger B, Della Pasqua OE, et al. Disease progression analysis: towards mechanism-based models. In: Kimko HHC, Peck CC, editors. Clinical trial simulations—applications and trends. New York: Springer; 2010. p. 437–60.

    Google Scholar 

  2. Danhof M, Alvan G, Dahl SG, Kuhlmann J, Paintaud G. Mechanism-based pharmacokinetic–pharmacodynamic modeling—a new classification of biomarkers. Pharm Res. 2005;22(9):1432–7. doi:10.1007/s11095-005-5882-3.

    Article  CAS  PubMed  Google Scholar 

  3. Breimer DD, Danhof M. Relevance of the application of pharmacokinetic–pharmacodynamic modelling concepts in drug development: the “wooden shoe” paradigm. Clin Pharmacokinet. 1997;32(4):259–67. doi:10.2165/00003088-199732040-00001.

    Article  CAS  PubMed  Google Scholar 

  4. Danhof M, de Jongh J, De Lange EC, Della Pasqua O, Ploeger BA, Voskuyl RA. Mechanism-based pharmacokinetic–pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol. 2007;47:357–400. doi:10.1146/annurev.pharmtox.47.120505.105154.

    Article  CAS  PubMed  Google Scholar 

  5. Miller R, Ewy W, Corrigan BW, Ouellet D, Hermann D, Kowalski KG, et al. How modeling and simulation have enhanced decision making in new drug development. J Pharmacokinet Pharmacodyn. 2005;32(2):185–97. doi:10.1007/s10928-005-0074-7.

    Article  PubMed  Google Scholar 

  6. Derendorf H, Lesko LJ, Chaikin P, Colburn WA, Lee P, Miller R, et al. Pharmacokinetic/pharmacodynamic modeling in drug research and development. J Clin Pharmacol. 2000;40(12 Pt 2):1399–418.

    CAS  PubMed  Google Scholar 

  7. Caveney EJ, Cohen OJ. Diabetes and biomarkers. J Diabetes Sci Technol. 2011;5(1):192–7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Garhyan P, Topp B, Chien JY, Sinha V, Danhof M, Schmidt S. Drug–disease model–based development of therapeutic agents for treatment of diabetes. In: Schmidt S, Derendorf H, editors. Applied pharmacometrics. New York: Springer; 2014. p. 139–59.

    Google Scholar 

  9. Landersdorfer CB, Jusko WJ. Pharmacokinetic/pharmacodynamic modelling in diabetes mellitus. Clin Pharmacokinet. 2008;47(7):417–48. doi:10.2165/00003088-200847070-00001.

    Article  CAS  PubMed  Google Scholar 

  10. Lin Y, Sun Z. Current views on type 2 diabetes. J Endocrinol. 2010;204(1):1–11. doi:10.1677/JOE-09-0260.

    Article  CAS  PubMed  Google Scholar 

  11. Farhy LS, McCall AL. Glucagon—the new ‘insulin’ in the pathophysiology of diabetes. Curr Opin Clin Nutr Metabol Care. 2015;18(4):407–14. doi:10.1097/MCO.0000000000000192.

    Article  CAS  Google Scholar 

  12. Osundiji MA, Evans ML. Brain control of insulin and glucagon secretion. Endocrinol Metab Clin North Am. 2013;42(1):1–14. doi:10.1016/j.ecl.2012.11.006.

    Article  PubMed  Google Scholar 

  13. Quesada I, Tuduri E, Ripoll C, Nadal A. Physiology of the pancreatic alpha-cell and glucagon secretion: role in glucose homeostasis and diabetes. J Endocrinol. 2008;199(1):5–19. doi:10.1677/JOE-08-0290.

    Article  CAS  PubMed  Google Scholar 

  14. de Winter W, DeJongh J, Post T, Ploeger B, Urquhart R, Moules I, et al. A mechanism-based disease progression model for comparison of long-term effects of pioglitazone, metformin and gliclazide on disease processes underlying type 2 diabetes mellitus. J Pharmacokinet Pharmacodyn. 2006;33(3):313–43. doi:10.1007/s10928-006-9008-2.

    Article  PubMed  Google Scholar 

  15. Choy S, Kjellsson MC, Karlsson MO, de Winter W. Weight-HbA1c-insulin-glucose (WHIG) model for long term disease progression of type 2 diabetes; PAGANZ, Population Approach Group of Australia and New Zealand; 2013. http://www.paganz.org/abstracts/weight-hba1c-insulin-glucose-whig-model-for-long-term-disease-progression-of-type-2-diabetes/.

  16. Benincosa L, Jusko WJ. Novel method of treatment. Geneva: World Intellectual Property Organization; 1999 (Publ. no. W0/2000/027341).

  17. Lledo-Garcia R, Mazer NA, Karlsson MO. A semi-mechanistic model of the relationship between average glucose and HbA1c in healthy and diabetic subjects. J Pharmacokinet Pharmacodyn. 2013;40(2):129–42. doi:10.1007/s10928-012-9289-6.

    Article  CAS  PubMed  Google Scholar 

  18. Hamren B, Bjork E, Sunzel M, Karlsson M. Models for plasma glucose, HbA1c, and hemoglobin interrelationships in patients with type 2 diabetes following tesaglitazar treatment. Clin Pharmacol Ther. 2008;84(2):228–35. doi:10.1038/clpt.2008.2.

    Article  CAS  PubMed  Google Scholar 

  19. Ribbing J, Hamren B, Svensson MK, Karlsson MO. A model for glucose, insulin, and beta-cell dynamics in subjects with insulin resistance and patients with type 2 diabetes. J Clin Pharmacol. 2010;50(8):861–72. doi:10.1177/0091270009349711.

    Article  CAS  PubMed  Google Scholar 

  20. Liu S, Ammirati MJ, Song X, Knafels JD, Zhang J, Greasley SE, et al. Insights into mechanism of glucokinase activation: observation of multiple distinct protein conformations. J Biol Chem. 2012;287(17):13598–610. doi:10.1074/jbc.M111.274126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burant CF. Activation of GPR40 as a therapeutic target for the treatment of type 2 diabetes. Diabetes Care. 2013;36(Suppl 2):S175–9. doi:10.2337/dcS13-2037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ferdaoussi M, Bergeron V, Kebede M, Mancini A, Alquier T, Poitout V. Free fatty acid receptor 1: a new drug target for type 2 diabetes? Can J Diabetes. 2012;36(5):275–80. doi:10.1016/j.jcjd.2012.08.002.

    Article  Google Scholar 

  23. Naik H, Lu J, Cao C, Pfister M, Vakilynejad M, Leifke E. Pharmacometric approaches to guide dose selection of the novel GPR40 agonist TAK-875 in subjects with type 2 diabetes mellitus. CPT Pharmacometr Syst Pharmacol. 2013;2:e22. doi:10.1038/psp.2012.23.

  24. Zhu X, Huang W, Qi H. GPR119 agonists: a novel strategy for type 2 diabetes treatment. In: Oguntibeju OO, editor. Diabetes mellitus—insights and perspectives. Rijeka: InTech; 2013. doi:10.5772/48444.

  25. Tess D, Ghosh A, Chen D, Cornelius P, Maurer T, Baillie R et al. Impact of modeling on GPR119 agonist development; ACoP, American Conference on Pharmacometrics Annual Meeting; 2011. http://www.rosaandco.com/posters/rosaACop2011PfizerPoster.pdf.

  26. Matschinsky FM, Zelent B, Doliba N, Li C, Vanderkooi JM, Naji A, et al. Glucokinase activators for diabetes therapy: may 2010 status report. Diabetes Care. 2011;34(Suppl 2):S236–43. doi:10.2337/dc11-s236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schneck KB, Zhang X, Bauer R, Karlsson MO, Sinha VP. Assessment of glycemic response to an oral glucokinase activator in a proof of concept study: application of a semi-mechanistic, integrated glucose–insulin–glucagon model. J Pharmacokinet Pharmacodyn. 2013;40(1):67–80. doi:10.1007/s10928-012-9287-8.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang X, Schneck K, Bue-Valleskey J, Yeo KP, Heathman M, Sinha V. Dose selection using a semi-mechanistic integrated glucose–insulin–glucagon model: designing phase 2 trials for a novel oral glucokinase activator. J Pharmacokinet Pharmacodyn. 2013;40(1):53–65. doi:10.1007/s10928-012-9286-9.

    Article  CAS  PubMed  Google Scholar 

  29. Jauslin PM, Frey N, Karlsson MO. Modeling of 24-hour glucose and insulin profiles of patients with type 2 diabetes. J Clin Pharmacol. 2011;51(2):153–64. doi:10.1177/0091270010362536.

    Article  CAS  PubMed  Google Scholar 

  30. Silber HE, Jauslin PM, Frey N, Gieschke R, Simonsson US, Karlsson MO. An integrated model for glucose and insulin regulation in healthy volunteers and type 2 diabetic patients following intravenous glucose provocations. J Clin Pharmacol. 2007;47(9):1159–71. doi:10.1177/0091270007304457.

    Article  CAS  PubMed  Google Scholar 

  31. Jauslin PM, Silber HE, Frey N, Gieschke R, Simonsson US, Jorga K, et al. An integrated glucose–insulin model to describe oral glucose tolerance test data in type 2 diabetics. J Clin Pharmacol. 2007;47(10):1244–55. doi:10.1177/0091270007302168.

    Article  CAS  PubMed  Google Scholar 

  32. Gastaldelli A, Miyazaki Y, Pettiti M, Buzzigoli E, Mahankali S, Ferrannini E, et al. Separate contribution of diabetes, total fat mass, and fat topography to glucose production, gluconeogenesis, and glycogenolysis. J Clin Endocrinol Metab. 2004;89(8):3914–21. doi:10.1210/jc.2003-031941.

    Article  CAS  PubMed  Google Scholar 

  33. Gastaldelli A, Baldi S, Pettiti M, Toschi E, Camastra S, Natali A, et al. Influence of obesity and type 2 diabetes on gluconeogenesis and glucose output in humans: a quantitative study. Diabetes. 2000;49(8):1367–73.

    Article  CAS  PubMed  Google Scholar 

  34. Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333(9):550–4. doi:10.1056/NEJM199508313330903.

    Article  CAS  PubMed  Google Scholar 

  35. Ward WK, Best JD, Halter JB, Porte DJ. Prolonged infusion of somatostatin with glucagon replacement increases plasma glucose and glucose turnover in man. J Clin Endocrinol Metab. 1984;58(3):449–53. doi:10.1210/jcem-58-3-449.

    Article  CAS  PubMed  Google Scholar 

  36. Kelly RP, Garhyan P, Raddad E, Fu H, Lim CN, Prince MJ, et al. Short-term administration of the glucagon receptor antagonist LY2409021 lowers blood glucose in healthy people and in those with type 2 diabetes. Diabetes Obes Metab. 2015;17(4):414–22. doi:10.1111/dom.12446.

    Article  CAS  PubMed  Google Scholar 

  37. Lau YY, Ma P, Gibiansky L, Komorowski R, Wang J, Wang G, et al. Pharmacokinetic and pharmacodynamic modeling of a monoclonal antibody antagonist of glucagon receptor in male ob/ob mice. AAPS J. 2009;11(4):700–9. doi:10.1208/s12248-009-9150-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hayes MR, Mietlicki-Baase EG, Kanoski SE, De Jonghe BC. Incretins and amylin: neuroendocrine communication between the gut, pancreas, and brain in control of food intake and blood glucose. Annu Rev Nutr. 2014;34:237–60. doi:10.1146/annurev-nutr-071812-161201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kjellsson MC, Cosson VF, Mazer NA, Frey N, Karlsson MO. A model-based approach to predict longitudinal HbA1c, using early phase glucose data from type 2 diabetes mellitus patients after anti-diabetic treatment. J Clin Pharmacol. 2013;53(6):589–600. doi:10.1002/jcph.86.

    Article  CAS  PubMed  Google Scholar 

  40. Chen T, Kagan L, Mager DE. Population pharmacodynamic modeling of exenatide after 2-week treatment in STZ/NA diabetic rats. J Pharm Sci. 2013;102(10):3844–51. doi:10.1002/jps.23682.

    Article  CAS  PubMed  Google Scholar 

  41. Chen T, Mager DE, Kagan L. Interspecies modeling and prediction of human exenatide pharmacokinetics. Pharm Res. 2013;30(3):751–60. doi:10.1007/s11095-012-0917-z.

    Article  CAS  PubMed  Google Scholar 

  42. Cirincione B, Passareli J, Kothare P, Cummings M, Grasela T, Fineman M. Development of a steady-state exposure–response model for exenatide once weekly; ASCPT, American Society for Clinical Pharmacology and Therapeutics; 2009. http://www.cognigencorp.com/images/uploads/posters/poster95_ASCPT_exenatideQW_2009mar21.pdf.

  43. Kim BH, Kim SE, Kang D, Lim KS, Kim JR, Jang IJ, et al. Pharmacokinetic–pharmacodynamic modelling of biomarker response to sitagliptin in healthy volunteers. Basic Clin Pharmacol Toxicol. 2013;113(2):113–25. doi:10.1111/bcpt.12068.

    Article  CAS  PubMed  Google Scholar 

  44. Landersdorfer CB, He YL, Jusko WJ. Mechanism-based population modelling of the effects of vildagliptin on GLP-1, glucose and insulin in patients with type 2 diabetes. Br J Clin Pharmacol. 2012;73(3):373–90.

    Article  CAS  PubMed  Google Scholar 

  45. Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28(6):507–32.

    Article  CAS  PubMed  Google Scholar 

  46. Landersdorfer CB, He YL, Jusko WJ. Mechanism-based population pharmacokinetic modelling in diabetes: vildagliptin as a tight binding inhibitor and substrate of dipeptidyl peptidase IV. Br J Clin Pharmacol. 2012;73(3):391–401.

    Article  CAS  PubMed  Google Scholar 

  47. de Winter W, Polidori D, Hoeben E, Devineni D, Neyens M, Vermeulen A. Population PK/PD analysis linking the direct acute effects of canagliflozin on renal glucose reabsorption to the overall effects of canagliflozin on long-term glucose control using HbA1c as the response marker from clinical studies; PAGE. Abstracts of the Annual Meeting of the Population Approach Group in Europe; ISSN 1871-6032 2013. PAGE 22 (2013) Abstr 2872. http://www.page-meeting.org/?abstract=2872.

  48. van der Walt JS, Hong Y, Zhang L, Pfister M, Boulton DW, Karlsson MO. A nonlinear mixed effects pharmacokinetic model for dapagliflozin and dapagliflozin 3-O-glucuronide in renal or hepatic impairment. CPT Pharmacometr Syst Pharmacol. 2013;2:e42. doi:10.1038/psp.2013.20.

  49. Demin OJ, Yakovleva T, Kolobkov D, Demin O. Analysis of the efficacy of SGLT2 inhibitors using semi-mechanistic model. Front Pharmacol. 2014;5:218. doi:10.3389/fphar.2014.00218.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gao W, Jusko WJ. Modeling disease progression and rosiglitazone intervention in type 2 diabetic Goto-Kakizaki rats. J Pharmacol Exp Ther. 2012;341(3):617–25. doi:10.1124/jpet.112.192419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jose T, Inzucchi SE. Cardiovascular effects of the DPP-4 inhibitors. Diabetes Vasc Dis Res. 2012;9(2):109–16. doi:10.1177/1479164111436236.

    Article  Google Scholar 

  52. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–26. doi:10.1056/NEJMoa1307684.

    Article  CAS  PubMed  Google Scholar 

  53. Monami M, Dicembrini I, Mannucci E. Dipeptidyl peptidase-4 inhibitors and heart failure: a meta-analysis of randomized clinical trials. Nutr Metabol Cardiovasc Dis. 2014;24(7):689–97. doi:10.1016/j.numecd.2014.01.017.

    Article  CAS  Google Scholar 

  54. Eddy DM, Schlessinger L. Archimedes: a trial-validated model of diabetes. Diabetes Care. 2003;26(11):3093–101.

    Article  PubMed  Google Scholar 

  55. Hayes AJ, Leal J, Gray AM, Holman RR, Clarke PM. UKPDS outcomes model 2: a new version of a model to simulate lifetime health outcomes of patients with type 2 diabetes mellitus using data from the 30 year United Kingdom Prospective Diabetes Study: UKPDS 82. Diabetologia. 2013;56(9):1925–33. doi:10.1007/s00125-013-2940-y.

    Article  CAS  PubMed  Google Scholar 

  56. Willis M, Asseburg C, He J. Validation of economic and health outcomes simulation model of type 2 diabetes mellitus (ECHO-T2DM). J Med Econ. 2013;16(8):1007–21. doi:10.3111/13696998.2013.809352.

    Article  PubMed  Google Scholar 

  57. Pacanowski MA, Hopley CW, Aquilante CL. Interindividual variability in oral antidiabetic drug disposition and response: the role of drug transporter polymorphisms. Expert Opin Drug Metabol Toxicol. 2008;4(5):529–44. doi:10.1517/17425255.4.5.529.

    Article  CAS  Google Scholar 

  58. Food and Drug Administration Safety and Innovation Act [S.3187, 112th Congress of the United States of America, 2nd session]; 2012. http://www.gpo.gov/fdsys/pkg/BILLS-112s3187enr/pdf/BILLS-112s3187enr.pdf.

  59. Samant TS, Mangal N, Lukacova V, Schmidt S. Quantitative clinical pharmacology for size and age scaling in pediatric drug development: a systematic review. J Clin Pharmacol. 2015;55(11):1207–17. doi:10.1002/jcph.555.

    Article  PubMed  Google Scholar 

  60. Zisowsky J, Krause A, Dingemanse J. Drug development for pediatric populations: regulatory aspects. Pharmaceutics. 2010;2(4):364.

    Article  PubMed Central  Google Scholar 

  61. Tamborlane WV, Klingensmith G. Crisis in care: limited treatment options for type 2 diabetes in adolescents and youth. Diabetes Care. 2013;36(6):1777–8. doi:10.2337/dc13-0743.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Christensen ML, Franklin BE, Momper JD, Reed MD. Pediatric drug development programs for type 2 diabetes: a review. J Clin Pharmacol. 2015;55(7):731–8. doi:10.1002/jcph.497.

    Article  PubMed  Google Scholar 

  63. Nesina® [package insert]. Deerfield: Takeda Pharmaceuticals America, Inc.; January 2013. http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/022271s000lbl.pdf.

  64. Tradjenta® [package insert]. Ridgefield: Boehringer Ingelheim Pharmaceuticals, Inc.; May 2014. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/201280s009lbl.pdf.

  65. Onglyza® [package insert]. Princeton: Bristol-Myers Squibb Company; May 2013. http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/022350s011lbl.pdf.

  66. Januvia® [package insert]. Whitehouse Station: Merck & Co., Inc.; March 2015. http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/021995s032lbl.pdf.

  67. DeFronzo RA, Fleck PR, Wilson CA, Mekki Q. Alogliptin Study Group. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin in patients with type 2 diabetes and inadequate glycemic control: a randomized, double-blind, placebo-controlled study. Diabetes Care. 2008;31(12):2315–7. doi:10.2337/dc08-1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Covington P, Christopher R, Davenport M, Fleck P, Mekki QA, Wann ER, et al. Pharmacokinetic, pharmacodynamic, and tolerability profiles of the dipeptidyl peptidase-4 inhibitor alogliptin: a randomized, double-blind, placebo-controlled, multiple-dose study in adult patients with type 2 diabetes. Clin Ther. 2008;30(3):499–512. doi:10.1016/j.clinthera.2008.03.004.

    Article  CAS  PubMed  Google Scholar 

  69. Tanzeum® [package insert]. Wilmington: GlaxoSmithKline LLC; April 2014. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125431s000lbl.pdf.

  70. Trulicity® [package insert]. Indianapolis: Eli Lilly and Company; March 2015. http://pi.lilly.com/us/trulicity-uspi.pdf.

  71. Byetta® [package insert]. Wilmington: AstraZeneca Pharmaceuticals LP; February 2015. http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/021773s040lbl.pdf.

  72. Victoza® [package insert]. Bagsvaerd: Novo Nordisk A/S; March 2015. http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/022341s023lbl.pdf.

  73. Grunberger G, Chang A, GarciaSoria G, Botros FT, Bsharat R, Milicevic Z. Monotherapy with the once-weekly GLP-1 analogue dulaglutide for 12 weeks in patients with type 2 diabetes: dose-dependent effects on glycaemic control in a randomized, double-blind, placebo-controlled study. Diabet Med. 2012;29(10):1260–7. doi:10.1111/j.1464-5491.2012.03745.x.

    Article  CAS  PubMed  Google Scholar 

  74. Rosenstock J, Reusch J, Bush M, Yang F, Stewart M. Albiglutide Study Group. Potential of albiglutide, a long-acting GLP-1 receptor agonist, in type 2 diabetes: a randomized controlled trial exploring weekly, biweekly, and monthly dosing. Diabetes Care. 2009;32(10):1880–6. doi:10.2337/dc09-0366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Matthews JE, Stewart MW, De Boever EH, Dobbins RL, Hodge RJ, Walker SE, et al. Pharmacodynamics, pharmacokinetics, safety, and tolerability of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008;93(12):4810–7. doi:10.1210/jc.2008-1518.

    Article  CAS  PubMed  Google Scholar 

  76. Burant CF, Viswanathan P, Marcinak J, Cao C, Vakilynejad M, Xie B, et al. TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet. 2012;379(9824):1403–11. doi:10.1016/S0140-6736(11)61879-5.

    Article  CAS  PubMed  Google Scholar 

  77. Leifke E, Naik H, Wu J, Viswanathan P, Demanno D, Kipnes M, et al. A multiple-ascending-dose study to evaluate safety, pharmacokinetics, and pharmacodynamics of a novel GPR40 agonist, TAK-875, in subjects with type 2 diabetes. Clin Pharmacol Ther. 2012;92(1):29–39. doi:10.1038/clpt.2012.43.

    Article  CAS  PubMed  Google Scholar 

  78. Nunez DJ, Bush MA, Collins DA, McMullen SL, Gillmor D, Apseloff G, et al. Gut hormone pharmacology of a novel GPR119 agonist (GSK1292263), metformin, and sitagliptin in type 2 diabetes mellitus: results from two randomized studies. PLoS One. 2014;9(4):e92494. doi:10.1371/journal.pone.0092494.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ansarullah, Lu Y, Holstein M, DeRuyter B, Rabinovitch A, Guo Z. Stimulating beta-cell regeneration by combining a GPR119 agonist with a DPP-IV inhibitor. PloS One. 2013;8(1):e53345. doi:10.1371/journal.pone.0053345.

  80. Gao J, Tian L, Weng G, O’Brien TD, Luo J, Guo Z. Stimulating beta-cell replication and improving islet graft function by AR231453, a GPR119 agonist. Transpl Proc. 2011;43(9):3217–20. doi:10.1016/j.transproceed.2011.10.021.

    Article  CAS  Google Scholar 

  81. Mu J, Qureshi SA, Brady EJ, Muise ES, Candelore MR, Jiang G, et al. Anti-diabetic efficacy and impact on amino acid metabolism of GRA1, a novel small-molecule glucagon receptor antagonist. PLoS One. 2012;7(11):e49572. doi:10.1371/journal.pone.0049572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nakamura A, Terauchi Y. Present status of clinical deployment of glucokinase activators. J Diabetes Investig. 2015;6(2):124–32. doi:10.1111/jdi.12294.

    Article  CAS  PubMed  Google Scholar 

  83. Meininger GE, Scott R, Alba M, Shentu Y, Luo E, Amin H, et al. Effects of MK-0941, a novel glucokinase activator, on glycemic control in insulin-treated patients with type 2 diabetes. Diabetes Care. 2011;34(12):2560–6. doi:10.2337/dc11-1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bonadonna RC, Heise T, Arbet-Engels C, Kapitza C, Avogaro A, Grimsby J, et al. Piragliatin (RO4389620), a novel glucokinase activator, lowers plasma glucose both in the postabsorptive state and after a glucose challenge in patients with type 2 diabetes mellitus: a mechanistic study. J Clin Endocrinol Metab. 2010;95(11):5028–36. doi:10.1210/jc.2010-1041.

    Article  CAS  PubMed  Google Scholar 

  85. Invokana® [package insert]. Titusville: Janssen Pharmaceuticals, Inc.; March 2015. http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/204042s005lbl.pdf.

  86. Farxiga® [package insert]. Wilmington: AstraZeneca Pharmaceuticals LP; March 2015. http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/202293s002lbl.pdf.

  87. Jardiance® [package insert]. Ridgefield: Boehringer Ingelheim Pharmaceuticals, Inc.; August 2014. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/204629s000lbl.pdf.

  88. Stenlof K, Cefalu WT, Kim KA, Alba M, Usiskin K, Tong C, et al. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab. 2013;15(4):372–82. doi:10.1111/dom.12054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ferrannini E, Seman L, Seewaldt-Becker E, Hantel S, Pinnetti S, Woerle HJ. A phase IIb, randomized, placebo-controlled study of the SGLT2 inhibitor empagliflozin in patients with type 2 diabetes. Diabetes Obes Metab. 2013;15(8):721–8. doi:10.1111/dom.12081.

    Article  CAS  PubMed  Google Scholar 

  90. Veltkamp SA, van Dijk J, Collins C, van Bruijnsvoort M, Kadokura T, Smulders RA. Combination treatment with ipragliflozin and metformin: a randomized, double-blind, placebo-controlled study in patients with type 2 diabetes mellitus. Clin Ther. 2012;34(8):1761–71. doi:10.1016/j.clinthera.2012.06.027.

    Article  CAS  PubMed  Google Scholar 

  91. Rosenstock J, Aggarwal N, Polidori D, Zhao Y, Arbit D, Usiskin K, et al. Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care. 2012;35(6):1232–8. doi:10.2337/dc11-1926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bolinder J, Ljunggren O, Kullberg J, Johansson L, Wilding J, Langkilde AM, et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2012;97(3):1020–31. doi:10.1210/jc.2011-2260.

    Article  CAS  PubMed  Google Scholar 

  93. Schwartz SL, Akinlade B, Klasen S, Kowalski D, Zhang W, Wilpshaar W. Safety, pharmacokinetic, and pharmacodynamic profiles of ipragliflozin (ASP1941), a novel and selective inhibitor of sodium-dependent glucose co-transporter 2, in patients with type 2 diabetes mellitus. Diabetes Technol Ther. 2011;13(12):1219–27. doi:10.1089/dia.2011.0012.

    Article  CAS  PubMed  Google Scholar 

  94. List JF, Woo V, Morales E, Tang W, Fiedorek FT. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care. 2009;32(4):650–7. doi:10.2337/dc08-1863.

    Article  CAS  PubMed  Google Scholar 

  95. Zambrowicz B, Ding ZM, Ogbaa I, Frazier K, Banks P, Turnage A et al. Effects of LX4211, a dual SGLT1/SGLT2 inhibitor, plus sitagliptin on postprandial active GLP-1 and glycemic control in type 2 diabetes. Clin Thera. 2013;35(3):273–85 e7. doi:10.1016/j.clinthera.2013.01.010.

  96. Zambrowicz B, Freiman J, Brown PM, Frazier KS, Turnage A, Bronner J, et al. LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial. Clin Pharmacol Ther. 2012;92(2):158–69. doi:10.1038/clpt.2012.58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhou L, Cryan EV, D’Andrea MR, Belkowski S, Conway BR, Demarest KT. Human cardiomyocytes express high level of Na+/glucose cotransporter 1 (SGLT1). J Cell Biochem. 2003;90(2):339–46. doi:10.1002/jcb.10631.

    Article  CAS  PubMed  Google Scholar 

  98. Wright EMI. Glucose galactose malabsorption. Am J Physiol. 1998;275(5 Pt 1):G879–82.

    CAS  PubMed  Google Scholar 

  99. Welchol® [package insert]. Parsippany: Daiichi Sankyo, Inc.; 2013. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/021176s037,022362s020lbl.pdf.

  100. Fonseca VA, Handelsman Y, Staels B. Colesevelam lowers glucose and lipid levels in type 2 diabetes: the clinical evidence. Diabetes Obes Metab. 2010;12(5):384–92. doi:10.1111/j.1463-1326.2009.01181.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Goldberg RB, Fonseca VA, Truitt KE, Jones MR. Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulin-based therapy. Arch Intern Med. 2008;168(14):1531–40. doi:10.1001/archinte.168.14.1531.

    Article  CAS  PubMed  Google Scholar 

  102. Bays HE, Goldberg RB, Truitt KE, Jones MR. Colesevelam hydrochloride therapy in patients with type 2 diabetes mellitus treated with metformin: glucose and lipid effects. Arch Intern Med. 2008;168(18):1975–83. doi:10.1001/archinte.168.18.1975.

    Article  CAS  PubMed  Google Scholar 

  103. Myalept® [package insert]. Wilmington: AstraZeneca Pharmaceuticals LP; June 2014. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125390s004lbl.pdf.

  104. Moon HS, Matarese G, Brennan AM, Chamberland JP, Liu X, Fiorenza CG, et al. Efficacy of metreleptin in obese patients with type 2 diabetes: cellular and molecular pathways underlying leptin tolerance. Diabetes. 2011;60(6):1647–56. doi:10.2337/db10-1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gimeno RE, Moller DE. FGF21-based pharmacotherapy—potential utility for metabolic disorders. Trends Endocrinol Metab. 2014;25(6):303–11. doi:10.1016/j.tem.2014.03.001.

    Article  CAS  PubMed  Google Scholar 

  106. Kharitonenkov A, Beals JM, Micanovic R, Strifler BA, Rathnachalam R, Wroblewski VJ, et al. Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319. PLoS One. 2013;8(3):e58575. doi:10.1371/journal.pone.0058575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chavez AO, Molina-Carrion M, Abdul-Ghani MA, Folli F, Defronzo RA, Tripathy D. Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care. 2009;32(8):1542–6. doi:10.2337/dc09-0684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fouqueray P, Leverve X, Fontaine E, Baquié M, Wollheim C. Imeglimin—a new oral anti-diabetic that targets the three key defects of type 2 diabetes. J Diabetes Metabol. 2011;02(04). doi:10.4172/2155-6156.1000126.

  109. Pirags V, Lebovitz H, Fouqueray P. Imeglimin, a novel glimin oral antidiabetic, exhibits a good efficacy and safety profile in type 2 diabetic patients. Diabetes Obes Metab. 2012;14(9):852–8. doi:10.1111/j.1463-1326.2012.01611.x.

    Article  CAS  PubMed  Google Scholar 

  110. Fouqueray P, Pirags V, Inzucchi SE, Bailey CJ, Schernthaner G, Diamant M, et al. The efficacy and safety of imeglimin as add-on therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy. Diabetes Care. 2013;36(3):565–8. doi:10.2337/dc12-0453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bergenstal RM, Rosenstock J, Arakaki RF, Prince MJ, Qu Y, Sinha VP, et al. A randomized, controlled study of once-daily LY2605541, a novel long-acting basal insulin, versus insulin glargine in basal insulin-treated patients with type 2 diabetes. Diabetes Care. 2012;35(11):2140–7. doi:10.2337/dc12-0060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rosenstock J, Banarer S, Fonseca VA, Inzucchi SE, Sun W, Yao W, et al. The 11-beta-hydroxysteroid dehydrogenase type 1 inhibitor INCB13739 improves hyperglycemia in patients with type 2 diabetes inadequately controlled by metformin monotherapy. Diabetes Care. 2010;33(7):1516–22. doi:10.2337/dc09-2315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Roman Götz for his critical input into the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Schmidt.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of interest

Puneet Gaitonde was supported by a postdoctoral Grant by Eli Lilly and Company, and is currently an employee of Pfizer Inc. Parag Garhyan and Jenny Chien are employees of Eli Lilly and Company, and own stock in Eli Lilly and Company. Catharina Link, Mirjam N. Trame and Stephan Schmidt have no potential conflicts of interest that might be relevant to the contents of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaitonde, P., Garhyan, P., Link, C. et al. A Comprehensive Review of Novel Drug–Disease Models in Diabetes Drug Development. Clin Pharmacokinet 55, 769–788 (2016). https://doi.org/10.1007/s40262-015-0359-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-015-0359-y

Keywords

Navigation