Skip to main content
Log in

A simplified chemical reaction mechanism for surrogate fuel of aviation kerosene

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

n-Decane was chosen as a one-component surrogate fuel to investigate the combustion performance of Rocket Propellant-3(RP-3) aviation kerosene. Sensitivity analysis and the reaction-path analysis method were used to simplify the detailed reaction mechanism of n-decane, and a simplified mechanism including 36 species and 62 elementary reaction steps was obtained. Moreover, 38-step elementary reaction investigated in the reference was simulated in the paper. Numerical simulation method was conducted for both the 62-step and the 38-step reaction mechanisms using pre-evaporation combustion models. Simultaneously Bunsen burner for the combustion of premixed, pre-evaporated RP-3 aviation kerosene was designed to verify the simplified mechanism, and the temperature and gas component concentrations in the axial and radial directions at different heights were measured. The experimental results revealed that the reaction temperature and the CO2 concentration increased first and then decreased across the axial positions, but on the contrary for the O2 concentration. The temperature and the O2 concentration distributions of experimental results are in good agreement with that of numerical simulation results for the 62-step simplified reactions, and the CO2 concentration distribution is in general agreement with the numerical data. But the 38-step simplified reactions can only predict the change trend for the important parameters which are mentioned above. Through the contrastive analysis for these two kinds of simplified reactions, the 62-step reactions can more accurately simulate the combustion characteristics of RP-3 kerosene. And n-decane can be used as a one-component surrogate fuel for RP-3 aviation kerosene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Violi A., Yan S., Eddings E. G., Sarofim A. F., Granata S., Faravelli T., Ranzi E., Combust. Sci. Technol., 2002, 174(11/12), 399

    Article  CAS  Google Scholar 

  2. Guo Y. L., Zhang B. C., Qiao J., Aeroengine, 2008, 34(4), 38

    Google Scholar 

  3. Edwards T., Maurice L. Q., J. Propul. Power, 2001, 17(3), 461

    Article  CAS  Google Scholar 

  4. Patterson P. M., Kyne A. G., Pourkhashanian M., Williams A., Wil-son C. W., J. Propul. Power, 2001, 17(2), 453

    Article  CAS  Google Scholar 

  5. Riesmeir E., Honnet S., Peters N., J. Eng. Gas Turbines and Power, 2004, 126(4), 899

    Article  Google Scholar 

  6. Li S. H., Liu J. W., Li R., Wang F., Tan N. X., Li X. Y., Chem. J. Chinese Universities, 2015, 36(8), 1576

    CAS  Google Scholar 

  7. Sun Y. J., Yao Q., Li Z. R., Li J. Q., Li X. Y., Chem. J. Chinese Uni-versities, 2016, 37(2), 328

    CAS  Google Scholar 

  8. Li Y. L., He J. T., Zhang C. H., Li P., Li X. Y., Spectrosc. Spect. Anal., 2016, 36(1), 11

    CAS  Google Scholar 

  9. Ning H. B., Li Z. R., Li X. Y., J. Phys. Chem., 2016, 32(1), 131

    CAS  Google Scholar 

  10. Wang H. R., Jin J., Wang J. B., Tan N. X., Li X. Y., Chem. J. Chinese Universities, 2012, 33(2), 341

    Google Scholar 

  11. Bikas G., Peters N., Combust. Flame, 2001, 126(1/2), 1456

    Article  CAS  Google Scholar 

  12. Turanyi T., Berees T., Vajda S., Int. J. Chem. Kinet., 1989, 21(2), 83

    Article  CAS  Google Scholar 

  13. Strelkova I. M., Kirillov I. A., Potapkin B. V., Safonov A. A., Suk-hanov L. P., Umansky S. Y., Deminsky M. A., Dean A. J., Varatharajan B., Tentner A. M., Combust Sci. Tech., 2008, 180(10/11), 1788

    Article  CAS  Google Scholar 

  14. Xiao B. G., Yang S. H., Zhao H. Y., Qian W. Q., Ling L. E., Journal of Aerospace Power, 2010, 25(9), 1948

    CAS  Google Scholar 

  15. Montgomery C. J., Cannon S. M., Mawid M. A., Sekar B., AIAA Pa-per, 2002, 2002-0336

    Google Scholar 

  16. Gueret C., Cathonnet M., Boettner J. C., Gaillard F., Proceeding of the Combustion Institute, 1990, 23(1), 211

    Article  Google Scholar 

  17. Luche J., Reuillon M., Boettner J. C., Cathonnet M., Combust. Sci. Technol., 2004, 176(3), 1935

    Article  CAS  Google Scholar 

  18. Dagaut P., J. Eng. Gas Turbines Power, 2007, 129, 394

    Article  CAS  Google Scholar 

  19. Honnet S., Seshadri K., Niemann U., Peters N., Proceeding of the Combustion Institute, 2009, 32, 485

    Article  CAS  Google Scholar 

  20. Vovelle C., Delfau J. L., Reuillon M., Formation of Aromatic Hy-drocarbons in Decane and Kerosene Flames at Reduced Pressure, Soot Formation in Combustion: Mechanisms and Models, Springer, Berlin, 1994, 50

    Google Scholar 

  21. Cooke J. A., Bellucci M., Smooke M. D., Gomez A., Violi A., Pro-ceedings of the Combustion Institute, 2005, 30(1), 439

    Article  Google Scholar 

  22. Wilson C. W., Kyne A. G., Pateerson P. M., Pourkashanian M., Wil-liams A., Proceedings of Turbo. Expo. 2001: Land, Sea and Air, ASME, New Orleans, USA, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingwen Yan.

Additional information

Supported by the Fundamental Research Funds for the Central Universities, China(No.NS2016023).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yan, Y., Dai, C. et al. A simplified chemical reaction mechanism for surrogate fuel of aviation kerosene. Chem. Res. Chin. Univ. 33, 274–281 (2017). https://doi.org/10.1007/s40242-017-6280-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-017-6280-1

Keywords

Navigation