Skip to main content

Advertisement

Log in

Total Intravenous Anaesthesia (TIVA) for Ambulatory Surgery: An Update

  • Ambulatory Anaesthesia (GP Joshi, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Total intravenous anesthesia (TIVA) has several potential benefits in the context of ambulatory surgery. This review explores the use of propofol-based TIVA from a wide number of perspectives: we review relevant literature in relation to patient and institutional outcomes attributable to TIVA; we provide an overview of the pharmacology of propofol and how TIVA delivery systems have evolved; we explore the advent of closed loop anesthesia systems; and we briefly review some of the pharmacological adjuncts used in TIVA.

Recent Findings

Propofol-based TIVA is associated with less post-operative nausea and vomiting, better pain outcomes, higher quality of recovery scores and better measures of perioperative efficiency when compared to vapor-based anesthesia. The combination of propofol and low-dose remifentanil appears to confer some benefit to the use of propofol alone. Infusion algorithms based on drug pharmacokinetics can be used in combination with biometrics such as processed EEG, skin conductance and heart rate variability to deliver closed-loop anesthesia.

Summary

Successful ambulatory surgery programmes require anaesthesia that permits rapid return of consciousness with minimal morbidity. Propofol-based TIVA appears to meet this challenge. The advent of new technology may further enhance this anesthesia modality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pandit JJ, Andrade J, Bogod DG, Hitchman JM, Jonker WR, Lucas N, Mackay JH, Nimmo AF, O’Connor K, O’Sullivan EP, Paul RG, Palmer JH, Plaat F, Radcliffe JJ, Sury MR, Torevell HE, Wang M, Hainsworth J, Cook TM, Royal College of Anaesthetists; Association of Anaesthetists of Great Britain and Ireland. 5th National Audit Project (NAP5) on accidental awareness during general anaesthesia: summary of main findings and risk factors. Br J Anaesth. 2014;113:549–59.

    Article  CAS  PubMed  Google Scholar 

  2. Sury MR, Palmer JH, Cook TM, Pandit JJ. The state of UK anaesthesia: a survey of National Health Service activity in 2013. Br J Anaesth. 2014;113:575–84.

    Article  CAS  PubMed  Google Scholar 

  3. Verma R, Alladi R, Jackson I, et al. Day case and short stay surgery: 2. Anaesthesia. 2011;66:417–34.

    Article  Google Scholar 

  4. Fosnot CD, Fleisher LA, Keogh J. Providing value in ambulatory anesthesia. Curr Opin Anaesthesiol. 2015;28(6):617–22.

    Article  CAS  PubMed  Google Scholar 

  5. Aylin P, Williams S, Jarman B, et al. Trends in day surgery rates. Br Med J. 2005;331:803.

    Article  Google Scholar 

  6. Cullen KA, Hall MJ and Golosinskiy A. Ambulatory surgery in the United States, 2006. Natl Health Stat Report 2009 Jan 28(11):1–25

  7. Department of Health. The NHS Plan. A Plan for Investment. A Plan for Reform. London: DoH, 2000 .

  8. Department of Health. National reference costs 2013 to 2014. (2014) www.gov.uk/government/publications/nhs-reference-costs-2013-to-2014.

  9. Appleby J. Day case surgery: a good news story for the NHS. BMJ. 2015;29(351):h4060.

    Article  Google Scholar 

  10. Chung F. Recovery pattern and home readiness after ambulatory surgery. Anesth Analg. 1995;80:896–902.

    CAS  PubMed  Google Scholar 

  11. Green G, Jonsson L. Nausea: the most important factor deter- mining length of stay after ambulatory anaesthesia. A comparative study of isoflurane and/or propofol techniques. Acta Anaesthesiol Scand. 1993;37:742–6.

    Article  CAS  PubMed  Google Scholar 

  12. Royse CF, Chung F, Newman S, Stygall J, Wilkinson DJ. Predictors of patient satisfaction with anaesthesia and surgery care: a cohort study using the Postoperative Quality of Recovery Scale. Eur J Anaesthesiol. 2013;30(3):106–10.

    Article  CAS  PubMed  Google Scholar 

  13. Larsen B, Seitz A, Larsen R. Recovery of cognitive function after remifentanil-propofol anesthesia: a comparison with desflurane and sevoflurane anesthesia. Anesth Analg. 2000;91:117–22.

    Google Scholar 

  14. Tramer M, Moore A, McQuay H. Propofol anesthesia and postoperative nausea and vomiting: quantitative systematic review of randomised controlled studies. Br J Anaesth. 1997;78:247–55.

    Article  CAS  PubMed  Google Scholar 

  15. •• Kumar G, Stendall C, Mistry R, Gurusamy K and Walker D. A comparison of total intravenous anaesthesia using propofol with sevoflurane or desflurane in ambulatory surgery: systematic review and meta-analysis. Anaesthesia 2014, 69(10):1138–50. A recent review article comparing TIVA to vapour based anesthesia in ambulatory surgery that found that TIVA had no benefit in terms of reducing unplanned admissions and post discharge PONV, areas where TIVA would have been previously considered beneficial. TIVA was also deemed to be more expensive in their per-case cost analysis.

  16. Chen C, Yang Y, Chen W, et al. Comparison of the anesthesia profiles between sevoflurane-nitrous oxide and propofol- nitrous oxide conveyed by laryngeal mask airway in patients undergoing ambulatory gynecological surgery. Acta Anaesthesiol Taiwanica. 2006;44:1017.

    Google Scholar 

  17. White H, Black RJ, Jones M, et al. Randomized comparison of two anti-emetic strategies in high-risk patients undergoing day-case gynaecological surgery. Br J Anaes. 2007;98:470–6.

    Article  CAS  Google Scholar 

  18. Tan T, Bhinder R, Carey M, et al. Day-surgery patients anes- thetized with propofol have less postoperative pain than those anesthetized with sevoflurane. Anesth Analg. 2010;111:83–5.

    Article  CAS  PubMed  Google Scholar 

  19. Moore JK, Elliott RA, Payne K, Moore EW, St Leger AS, Harper NJ, Pollard BJ, Kerr J. The effect of anaesthetic agents on induction, recovery and patient preferences in adult day case surgery: a 7-day follow-up randomized controlled trial. Eur J Anaesthesiol. 2008;25(11):876–83.

    Article  CAS  PubMed  Google Scholar 

  20. Akkurt BC, Temiz M, Inanoglu K, Aslan A, Turhanoglu S, Asfurglu Z, Canbolant E. Comparison of recovery characteristics, postoperative nausea and vomiting, and gastrointestinal motility with total intravenous anesthesia with propofol versus inhalation anesthesia with desflurane for laparoscopic cholecystectomy: a randomized controlled study. Curr Ther Res Clin Exp. 2009;70(2):94–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hong IY, Kang YS, Kil HK. Anaesthesia for day case excisional breast biopsy: propofol-remifentanil compared with sevoflurane-nitrous oxide. Eur J Anaesthesiol. 2008;25(6):460–7.

    Article  CAS  PubMed  Google Scholar 

  22. • Lee WK, Kim MS, Kang SW, Kim S and Lee JR. Type of anaesthesia and patient quality of recovery: a randomized trial comparing propofol–remifentanil total i.v. anaesthesia with desflurane anaesthesia. Br J Anaesth 2015, 114(4):663–68. Although this randomized controlled trial was performed on inpatients, it clearly demonstrated a benefit of TIVA over desflurane anesthesia using the Quality of Recovery40 score, which may be a better measure of post-operative recovery than simple measures such as unplanned admissions.

  23. Gornall BF, Myles PS, Smith CL, et al. Measurement of quality of recovery using the QoR-40: a quantitative systematic review. Br J Anaesth. 2013;111:161–9.

    Article  CAS  PubMed  Google Scholar 

  24. Abdallah FW, Morgan PJ, Cil T, McNaught A, Escallon JM, Semple JL, Wu W, Chan VW. Ultrasound-guided multilevel paravertebral blocks and total intravenous anesthesia improve the quality of recovery after ambulatory breast tumor resection. Anesthesiology. 2014;120(3):703–13.

    Article  CAS  PubMed  Google Scholar 

  25. Wu ZF, Jian GS, Lee MS, Lin C, Chen YF, Chen YW, Huang YS, Cherng CH, Lu CH. An analysis of anesthesia-controlled operating room time after propofol-based total intravenous anesthesia compared with desflurane anesthesia in ophthalmic surgery: a retrospective study. Anesth Analg. 2014;119(6):1393–406.

    Article  CAS  PubMed  Google Scholar 

  26. Epstein RH, Dexter F, Brull SJ. Cohort study of cases with prolonged tracheal extubation times to examine the relationship with duration of workday. Can J Anaesth. 2013;60:1070–6.

    Article  PubMed  Google Scholar 

  27. Masursky D, Dexter F, Kwakye MO, Smallman B. Measure to quantify the influence of time from end of surgery to tracheal extubation on operating room workflow. Anesth Analg. 2012;115:402–6.

    Article  PubMed  Google Scholar 

  28. Flashion R, Ekstein P, Matzkin H, Weinbroum AA. An evaluation of general and spinal anesthesia techniques for prostate brachytherapy in a day surgery setting. Anesth Analg. 2005;101(6):1656–8.

    Article  Google Scholar 

  29. Harsten A, Kehlet H, Toksvig-Larsen S. Recovery after total intravenous general anaesthesia or spinal anaesthesia for total knee arthroplasty: a randomized trial. Br J Anaesth. 2013;111(3):391–9.

    Article  CAS  PubMed  Google Scholar 

  30. Harsten A, Kehlet H, Liung P, Toksvig-Larsen S. Total intravenous general anaesthesia vs. spinal anaesthesia for total hip arthroplasty: a randomised, controlled trial. Acta Anaesthesiol Scand. 2015;59(3):298–309.

    Article  CAS  PubMed  Google Scholar 

  31. Kingston S, Mao L, Yang L, et al. Propofol inhibits phosphorylation of N-methyl-d-aspartate receptor NR1 subunits in neurons. Anesthesiology. 2006;104:763–9.

    Article  CAS  PubMed  Google Scholar 

  32. Orser BA, Bertlik M, Wang LY, MacDonald JF. Inhibition by propofol (2,6 di-isopropylphenol) of the N-methyl-d-aspartate subtype of glutamate receptor in cultured hippocampal neurones. Br J Pharmacol. 1995;116:1761–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang JP, Guo Z. Propofol suppresses activation of the nociception specific neuron in the parafascicular nucleus of the thalamus evoked by coronary artery occlusion in rats. Eur J Anaesthesiol. 2009;26:60–5.

    Article  CAS  PubMed  Google Scholar 

  34. Fassoulaki A. Is propofol an analgesic? Eur J Anaesth. 2011;28:481–2.

    Article  Google Scholar 

  35. Anker-Moller E, Spangsberg N, Arendt-Nielsen L, et al. Subhypnotic doses of thiopentone and propofol cause analgesia to experimentally induced acute pain. Br J Anaesth. 1991;66:185–8.

    Article  CAS  PubMed  Google Scholar 

  36. Zacny JP, Coalson DW, Young CJ, et al. Propofol at conscious sedation doses produces mild analgesia to cold pressor-induced pain in healthy volunteers. J Clin Anesth. 1996;8:469–74.

    Article  CAS  PubMed  Google Scholar 

  37. Bandschapp O, Filitz J, Ihmsen H, Berset A, Urwyler A, Koppert W, Ruppen W. Analgesic and antihyperalgesic properties of propofol in a human pain model. Anesthesiology. 2010;113(2):421–8.

    Article  CAS  PubMed  Google Scholar 

  38. Cheng SS, Yeh J, Flood P. Anesthesia matters: patients anesthetized with propofol have less postoperative pain than those anesthetized with isoflurane. Anesth Analg. 2008;106:264–9.

    Article  PubMed  Google Scholar 

  39. Shin S, Cho AR, Lee HJ, Kim HJ, Byeon GJ, Yoon JW, Kim KH, Kwon JY. Maintenance anaesthetics during remifentanil-based anaesthesia might affect postoperative pain control after breast cancer surgery. Br J Anaesth. 2010;105(5):661–7.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Y, Eger EI II, Dutton RC, Sonner JM. Inhaled anesthetics have hyperalgesic effects at 0.1 minimum alveolar anesthetic concentration. Anesth Analg. 2000;91:462–6.

    CAS  PubMed  Google Scholar 

  41. Takechi K, Carstens MI, Klein AH, Carstens E. The antinociceptive and antihyperalgesic effects of topical propofol on dorsal horn neurons in the rat. Anesth Analg. 2013;116(4):932–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fassoulaki A, Melemeni A, Paraskeva A, et al. Postoperative pain and analgesic requirements after anesthesia with sevoflurane, desflurane or propofol. Anesth Analg. 2008;107:1715–9.

    Article  CAS  PubMed  Google Scholar 

  43. Tramer M, Moore A, McQuay H. Propofol anaesthesia and postoperative nausea and vomiting: quantitative systematic review of randomized controlled studies. Br J Anaesth. 1997;78:247–55.

    Article  CAS  PubMed  Google Scholar 

  44. Leslie K, Clavisi O, Hargrove J. Target-controlled infusion versus manually-controlled infusion of propofol for general anesthesia or sedation in adults. Cochrane Database Syst Rev. 2008;16(3):CD006059.

    Google Scholar 

  45. Muller T, Ludwig A, Biro P. Two distinct application habits for propofol: an observational study. Eur J Anaesthesiol. 2010;27:265–9.

    Article  CAS  PubMed  Google Scholar 

  46. Moerman AT, Herregods LL, De Vos MM, Mortier EP, Struys MM. Manual versus target-controlled infusion remifentanil administration in spontaneously breathing patients. Anesth Analg. 2009;108(3):828–34.

    Article  PubMed  Google Scholar 

  47. Glen JB. The development of ‘Diprifusor’: a TCI system for propofol. Anaesthesia. 1998;53(S1):13–21.

    Article  CAS  PubMed  Google Scholar 

  48. Marsh B, White M, Morton N, Kenny GN. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth. 1991;67:41–8.

    Article  CAS  PubMed  Google Scholar 

  49. • Struys MM, De Smet T, Glen JI, Vereecke HE, Absalom AR and Schnider TW. The history of target-controlled infusion. Anesth Analg. 2016, 122(1):56–69. Interesting article with a comprehensive review of the history of target-controlled infusions in terms of pharmacokinetics, infusion strategies and infusion platforms. Useful reference article.

  50. Absalom AR, Glen JI, Zwart GJ, Schnider TW, Struys MM. Target-controlled infusion: a mature technology. Anesth Analg. 2016;122(1):70–8.

    Article  CAS  PubMed  Google Scholar 

  51. Schnider TW, Minto CF, Gambus PL, et al. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology. 1998;88:1170–82.

    Article  CAS  PubMed  Google Scholar 

  52. Minto CF, Schnider TW, Egan TD, Youngs E, Lemmens HJ, Gambus PL, Billard V, Hoke JF, Moore KH, Hermann DJ, Muir KT, Mandema JW, Shafer SL. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology. 1997;86:10–23.

    Article  CAS  PubMed  Google Scholar 

  53. ••Eleveld DJ, Proost JH, Cortinez LI, Absalom AR and Struys MM. A general-purpose pharmacokinetic model for propofol. Anesth Analg. 2014;118(6):1221–37. This group has derived a ‘general purpose’ infusion model for propofol TCI to better suit the inter-patient variability than current popular TCI models. The Eleveld model outperforms all other infusions models with the exception of Paedfusor in children. This may be the first of the new generation of TCI models to be incorporated into pre-programmed TCI delivery systems.

  54. Cortinez LI, De La Fuente N, Eleveld DJ, Oliveros A, Crovari F, Sepulveda P, Ibacache M, Solaris S. Performance of propofol target-controlled infusion models in the obese: pharmacokinetic and pharmacodynamic analysis. Anesth Analg. 2014;119(2):302–10.

    Article  CAS  PubMed  Google Scholar 

  55. Schuttler J, Kloos S, Schwilden H, Stoeckel H. Total intravenous anaesthesia with propofol and alfentanil by computer-assisted infusion. Anaesthesia. 1988;43(Suppl):2–7.

    Article  PubMed  Google Scholar 

  56. Varvel JR, Donoho DL, Shafer SL. Measuring the predictive performance of computer-controlled infusion pumps. J Pharmacokinet Biopharm. 1992;20:63–94.

    Article  CAS  PubMed  Google Scholar 

  57. Glen JB, White M. A comparison of the predictive performance of three pharmacokinetic models for propofol using measured values obtained during target-controlled infusion. Anaesthesia. 2014;69(6):550–7.

    Article  CAS  PubMed  Google Scholar 

  58. Swinhoe CF, Peacock JE, Glen JB, Reilly CS. Evaluation of the predictive performance of a ‘Diprifusor’ TCI system. Anaesthesia. 1998;53(Suppl 1):61–7.

    Article  CAS  PubMed  Google Scholar 

  59. Cortinez LI, Anderson BJ, Penna A, Olivares L, Munoz HR, Holford NH, Struys MM, Sepulveda P. Influence of obesity on propofol pharmacokinetics: derivation of a pharmacokinetic model. Br J Anaesth. 2010;105(4):448–56.

    Article  CAS  PubMed  Google Scholar 

  60. Short TG, Hannam JA, Laurent S, Campbell D, Misur M, Merry AF, Tam YH. Refining target-controlled infusion: an assessment of pharmacodynamic target-controlled infusion of propofol and remifentanil using a response surface model of their combined effects on bispectral index. Anesth Analg. 2016;122(1):90–7.

    Article  CAS  PubMed  Google Scholar 

  61. Bouillon TW, Bruhn J, Radulescu L, Andresen C, Shafer TJ, Cohane C, Shafer SL. Pharmacodynamic interaction between propofol and remifentanil regarding hypnosis, tolerance of laryngoscopy, bispectral index, and electroencephalographic approximate entropy. Anesthesiology. 2004;100:1353–72.

    Article  CAS  PubMed  Google Scholar 

  62. Schnider TW, Minto CF, Shafer SL, Gambus PL, Andresen C, Goodale DB, Youngs EJ. The influence of age on propofol pharmacodynamics. Anesthesiology. 1999;90:1502–16.

    Article  CAS  PubMed  Google Scholar 

  63. Absalom AR, De Keyser R, Struys MM. Closed loop anesthesia: are we getting close to finding the holy grail? Anesth Analg. 2011;112(3):516–8.

    Article  PubMed  Google Scholar 

  64. Schwilden H, Stoeckel H, Schüttler J. Closed-loop feedback control of propofol anaesthesia by quantitative EEG analysis in humans. Br J Anaesth. 1989;62:290–6.

    Article  CAS  PubMed  Google Scholar 

  65. Liu N, Rinehart J. Closed-loop propofol administration: routine care or a research tool? what impact in the future? Anesth Analg. 2016;122(1):4–6.

    Article  PubMed  Google Scholar 

  66. Mortier E, Struys M, De Smet T, Versichelen L, Rolly G. Closed- loop controlled administration of propofol using bispectral anal- ysis. Anaesthesia. 1998;53:749–54.

    Article  CAS  PubMed  Google Scholar 

  67. Dumont GA, Ansermino JM. Closed-loop control of anesthesia: a primer for anesthesiologists. Anesth Analg. 2013;117(5):1130–8.

    Article  CAS  PubMed  Google Scholar 

  68. Liu N, Chazot T, Genty A, Landais A, Restoux A, McGee K, Laloë PA, Trillat B, Barvais L, Fischler M. Titration of propofol for anesthetic induction and maintenance guided by the bispectral index: closed-loop versus manual control: a prospective, randomized, multicenter study. Anesthesiology. 2006;104:686–95.

    Article  CAS  PubMed  Google Scholar 

  69. Puri GD, Kumar B, Aveek J. Closed-loop anesthesia delivery system (CLADS) using bispectral index: a performance assessment study. Anaesth Intensiv Care. 2007;35:357–62.

    Article  CAS  Google Scholar 

  70. Liu N, Chazot T, Hamada S, Landais A, Boichut N, Dussaussoy C, Trillat B, Beydon L, Samain E, Sessler DI, Fischler M. Closed- loop coadministration of propofol and remifentanil guided by bispectral index: a randomized multicenter study. Anesth Analg. 2011;112:546–57.

    Article  CAS  PubMed  Google Scholar 

  71. •• Hemmerling TM, Arbeid E, Wehbe M, Cyr S, Taddei R and Zaouter C. Evaluation of a novel closed-loop total intravenous anaesthesia drug delivery system: a randomized controlled trial. Br J Anaesth. 2013;110:1031–39. A randomized controlled trial evaluating the first closed loop system incorporating hypnosis, analgesia and muscle relaxation. The system, named ‘McSleepy’, outperformed manual control of anesthesia in a group of 186 patients.

  72. Dussaussoy C, Peres M, Jaoul V, Liu N, Chazot T, Picquet J, Fischler M, Beydon L. Automated titration of propofol and remifentanil decreases the anesthesiologist’s workload during vascular or thoracic surgery: a randomized prospective study. J Clin Monit Comput. 2014;28:35–40.

    Article  PubMed  Google Scholar 

  73. •• Puri GD, Mathew PJ, Biswas I, Dutta A, Sood J, Gombar S, Palta S, Tsering M, Gautam PL, Jayant A, Arora I, Bajaj V, Punia TS and Singh G. A multicentric evaluation of closed-loop anesthesia delivery system: a randomized controlled trial. Anesth Analg. 2016;122:106–14. Largest multicenter RCT to date evaluating closed-loop anesthesia versus human control. Closed loop control delivered consistently more accurate anesthesia than their human counterparts. Standardization of delivered anesthesia will be possible with accurate closed-loop systems.

  74. Kearse LA Jr, Rosow C, Zaslavsky A, Connors P, Dershwitz M, Denman W. Bispectral analysis of the electroencephalogram predicts conscious processing of information during propofol sedation and hypnosis. Anesthesiology. 1998;88(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  75. Avidan MS, Zhang L, Burnside BA, Finkel KJ, Searleman AC, Selvidge JA, Saager L, Turner MS, Rao S, Bottros M, Hantler C, Jacobsohn E, Evers AS. Anesthesia awareness and the bispectral index. N Engl J Med. 2008;358(11):1097–108.

    Article  CAS  PubMed  Google Scholar 

  76. Kivlehan F, Chaum E, Lindner E. Propofol detection and quantification in human blood: the promise of feedback controlled, closed-loop anesthesia. Analyst. 2015;140(1):98–106.

    Article  CAS  PubMed  Google Scholar 

  77. Takita A, Masui K, Kazama T. On-line monitoring of end-tidal propofol concentration in anesthetized patients. Anesthesiology. 2007;106:659–64.

    Article  CAS  PubMed  Google Scholar 

  78. Grossherr M, Hengstenberg A, Meier T, Dibbelt L, Igl BW, Ziegler A, Schmucker P, Gehring H. Propofol concentration in exhaled air and arterial plasma in mechanically ventilated patients undergoing cardiac surgery. Br J Anesth. 2009;102(5):608–13.

    Article  CAS  Google Scholar 

  79. Chen X, Zhang XL, Liu L, Chen Y, Piao MY, Zhang FJ, Wu WD, Zhong YB, Sun K, Zou YC, Zhang X, Wang D, Wang P, Yan M. Gas chromatograph-surface acoustic wave for quick real-time assessment of blood/exhaled gas ratio of propofol in humans. Br J Anaesth. 2014;113(5):807–14.

    Article  CAS  PubMed  Google Scholar 

  80. Colin P, Elevald DJ, van den Berg JP, Vereecke HE, Struys MM, Schelling G, Apfel CC, Hornuss C. Propofol breath monitoring as a potential tool to improve the prediction of intraoperative plasma concentrations. Clin Pharmacokinet. 2016;55(7):849–59.

    Article  CAS  PubMed  Google Scholar 

  81. Liu Y, Gong Y, Wang C, Wang X, Zhou Q, Wang D, Guo L, Pi X, Zhang X, Luo S, Li H, Li E. Online breath analysis of propofol during anesthesia: clinical application of membrane inlet-ion mobility spectrometry. Acta Anaesthesiol Scand. 2015;59(3):319–28.

    Article  CAS  PubMed  Google Scholar 

  82. Liu N, Le Guen M, Benabbes-Lambert F, et al. Feasibility of closed-loop & titration of propofol and remifentanil guided by the spectral M-Entropy monitor. Anesthesiology. 2012;116:286–95.

    Article  CAS  PubMed  Google Scholar 

  83. Wheeler P, Hoffman WE, Baughman VL, Koenig H. Response entropy increases during painful stimulation. J Neurosurg Anesthesiol. 2005;17(2):86–90.

    Article  PubMed  Google Scholar 

  84. Hemmerling TM, Charabati S, Salhab E, Bracco D, Mathieu PA. The analgoscore: A novel score to monitor intraoperative nociception and its use for closed-loop application of remifentanil. J Comput. 2009;4(4):311–8.

    Article  Google Scholar 

  85. Ben-Israel N, Kliger M, Zuckerman G, Katz Y, Edry R. Monitoring the nociception level: a multi-parameter approach. J Clin Monit Comput. 2013;27:659–68.

    Article  PubMed  Google Scholar 

  86. Edry R, Recea V, Dikust Y, Sessler DI. Preliminary intraoperative validation of the nociception level index: a noninvasive nociception monitor. Anesthesiology. 2016;125(1):193–203.

    Article  PubMed  Google Scholar 

  87. Guglielminotti J, Grillot N, Paule M, Mentre F, Servin F, Montravers P, Longrois D. Prediction of movement to surgical stimulation by the pupillary dilatation reflex amplitude evoked by a standardized noxious test. Anesthesiology. 2015;122(5):985–93.

    Article  PubMed  Google Scholar 

  88. Sahinovic MM, Elevald DJ, Kalmar AF, Heeremans EH, De Smet T, Seshagiri CV, Absalom AR, Vereecke HE, Struys MM. Accuracy of the composite variability index as a measure of the balance between nociception and antinociception during anesthesia. Anesth Analg. 2014;119(2):288–301.

    Article  CAS  PubMed  Google Scholar 

  89. Sessler DI, Sigl JC, Kelley SD, Chamoun NG, Manberg PJ, Saager L, Kurz A, Greenwald S. Hospital stay and mortality are increased in patients having a “triple low” of low blood pressure, low bispectral index, and low minimum alveolar concentration of volatile anesthesia. Anesthesiology. 2012;116:1195–203.

    Article  PubMed  Google Scholar 

  90. Jee YS, Hong JY. Effects of remifentanil on propofol requirements for loss of consciousness in target-controlled infusion. Minerva Anestesiol. 2008;74(1–2):17–22.

    CAS  PubMed  Google Scholar 

  91. Zaballos M, Bastida E, Agusti S, Portas M, Jiminez C, Lopez-Gil M. Effect-site concentration of propofol required for LMA-Supreme™ insertion with and without remifentanil: a randomized controlled trial. BMC Anaesthesiol. 2015;15:131.

    Article  CAS  Google Scholar 

  92. Rivosecchi RM, Rice MJ, Smithburger PL, Buckley MS, Coons JC, Kane-Gill SL. An evidence based systematic review of remifentanil associated opioid-induced hyperalgesia. Expert Opin Drug Saf. 2014;13(5):587–603.

    Article  CAS  PubMed  Google Scholar 

  93. Guignard B, Bossard AE, Coste C, et al. Acute opioid tolerance: intraoperative remifentanil increases postoperative pain and morphine requirement. Anesthesiology. 2000;93:409–17.

    Article  CAS  PubMed  Google Scholar 

  94. Angst MS, Koppert W, Pahl I, Clark DJ, Schmelz M. Short- term infusion of the mu-opioid agonist remifentanil in humans causes hyperalgesia during withdrawal. Pain. 2003;106:49–57.

    Article  CAS  PubMed  Google Scholar 

  95. Chu LF, Angst MS, Clark D. Opioid-induced hyperalgesia in humans: molecular mechanisms and clinical considerations. Clin J Pain. 2008;24:479–96.

    Article  PubMed  Google Scholar 

  96. Hansen EG, Duedahl TH, Romsing J, et al. Intra-operative remifentanil might influence pain levels in the immediate post-operative period after major abdominal surgery. Acta Anaesthesiol Scand. 2005;49:1464–70.

    CAS  PubMed  Google Scholar 

  97. Fishbain DA, Cole B, Lewis JE, Gao J, Rosomoff RS. Do opioids induce hyperalgesia in humans? An evidence-based structured review. Pain Med. 2009;10:829–39.

    Article  PubMed  Google Scholar 

  98. Fletcher D, Martinex V. Opioid-induced hyperalgesia in patients after surgery: a systematic review and a meta-analysis. Br J Anaesth. 2014;112(6):991–1004.

    Article  CAS  PubMed  Google Scholar 

  99. Kim SH, Stoicea N, Soghomonyan S, Bergese SD. Intraoperative use of remifentanil and opioid induced hyperalgesia/acute opioid tolerance: systematic review. Front Pharmacol. 2014;8(5):108.

    Google Scholar 

  100. Wilder-Smith OH, Arendt-Nielsen L. Postoperative hyperalgesia: its clinical importance and relevance. Anesthesiology. 2006;104(3):601–7.

    Article  PubMed  Google Scholar 

  101. Richebe P, Pouquet O, Jelacic S, Mehta S, Calderon J, Picard W, Rivat C, Cahana A, Janvier G. Target-controlled dosing of remifentanil during cardiac surgery reduces postoperative hyperalgesia. J Cardiothor Vasc Anesth. 2011;25(6):917–25.

    Article  CAS  Google Scholar 

  102. Comelon M, Raeder J, Stubhaug A, Nielsen CS, Draegni T, Lenz H. Gradual withdrawal of remifentanil infusion may prevent opioid-induced hyperalgesia. Br J Anaesth. 2016;116(4):524–30.

    Article  CAS  PubMed  Google Scholar 

  103. Singler B, Troster A, Manering N, Schuttler J, Koppert W. Modulation of remifentanil-induced postinfusion hyperalgesia by propofol. Anesth Analg. 2007;104(6):1397–403.

    Article  CAS  PubMed  Google Scholar 

  104. Ziemann-Gimmel P, Goldfarb AA, Koppman J, Marema RT. Opioid-free total intravenous anaesthesia reduces postoperative nausea and vomiting in bariatric surgery beyond triple prophylaxis. Br J Anaseth. 2014;112(5):906–11.

    Article  CAS  Google Scholar 

  105. Kim SH, Oh CS, Yoon TG, Cho MJ, Yang JH, Yi HR. Total intravenous anesthesia with high-dose remifentanil does not aggravate postoperative nausea and vomiting and pain, compared with low-dose remifentanil: a double-blind and randomized trial. Sci World J. 2014;2014:724753.

    Google Scholar 

  106. Hara R, Hirota K, Sato M, Tanabe H, Yazawa T, Habara T, Fukuda K. The impact of remifentanil on incidence and severity of postoperative nausea and vomiting in a university hospital-based ambulatory surgery center: a retrospective observation study. Korean J Anesthesiol. 2013;65(2):142–6.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Smith I. Alpha-2-agonists in day case anesthesia. Curr Opin Anaesthesiol. 2011;24(6):644–8.

    Article  PubMed  Google Scholar 

  108. Le Guen M, Liu N, Tounou F, Auge M, Tuil O, Chazot T, Dardelle D, Laloe PA, Bonnet F, Sessler DI, Fischler M. Dexmedetomidine reduces propofol and remifentanil requirements during bispectral index-guided closed-loop anesthesia: a double-blind, placebo-controlled trial. Anesth Analg. 2014;118(5):946–55.

    Article  CAS  PubMed  Google Scholar 

  109. Liang X, Zhou M, Feng JJ, Wu L, Fang SP, Ge XY, Sun HJ, Ren PC, Lv X. Efficacy of dexmedetomidine on postoperative nausea and vomiting: a meta-analysis of randomized controlled trials. Int J Clin Exp Med. 2015;8(6):8450–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Venn RM, Karol MD, Grounds RM. Pharmacokinetics of dexmedetomidine infusions for sedation of postoperative patients requiring intensive care. Br J Anaesth. 2002;88:669–75.

    Article  CAS  PubMed  Google Scholar 

  111. Kaba A, Laurent SR, Detroz BJ, et al. Intravenous lidocaine infusion facilitates acute rehabilitation after laparoscopic colectomy. Anesthesiology. 2007;106:11–8.

    Article  CAS  PubMed  Google Scholar 

  112. Cui W, Li Y, Li S, et al. Systemic administration of lidocaine reduces morphine requirements and postoperative pain of patients undergoing thoracic surgery after propofol-remifentanil based anaesthesia. Eur J Anaesthesiol. 2010;27:41–6.

    Article  CAS  PubMed  Google Scholar 

  113. Grigoras A, Lee P, Sattar F, Shorten G. Perioperative intravenous lidocaine decreases the incidence of persistent pain after breast surgery. Clin J Pain. 2012;28(7):567–72.

    Article  PubMed  Google Scholar 

  114. Hans GA, Lauwick SM, Kaba A, Bonhomme V, Struys MM, Hans PC, Lamy ML, Joris JL. Intravenous lidocaine infusion reduces bispectral index-guided requirements of propofol only during surgical stimulation. Br J Anaesth. 2010;105(4):471–9.

    Article  CAS  PubMed  Google Scholar 

  115. Altermatt FR, Bugedo DA, Delfino AE, Solari S, Guerra J, Munoz HR, Cortinez LI. Evaluation of the effect of intravenous lidocaine on propofol requirements during total intravenous anaesthesia as measured by bispectral index. Br J Anaesth. 2012;108(6):979–83.

    Article  CAS  PubMed  Google Scholar 

  116. Sneyd JR, Holmes KA. Inhalational or total intravenous anesthesia: is total intravenous anesthesia useful and are there economic benefits? Curr Opin Anaesthesiol. 2011;24(2):182–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Declan O’Donnell.

Ethics declarations

Conflict of Interest

Colin Stuart Black and Brian Declan O’Donnell declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on Ambulatory Anaesthesia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Black, C.S., O’Donnell, B.D. Total Intravenous Anaesthesia (TIVA) for Ambulatory Surgery: An Update. Curr Anesthesiol Rep 6, 381–393 (2016). https://doi.org/10.1007/s40140-016-0179-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-016-0179-0

Keywords

Navigation