Skip to main content
Log in

On some properties of space inverses of stochastic flows

  • Original Article
  • Published:
Stochastic Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

We derive moment estimates and a strong limit theorem for space inverses of stochastic flows generated by jump SDEs with adapted coefficients in weighted Hölder norms using the Sobolev embedding theorem and the change of variable formula. As an application of some basic properties of flows of continuous SDEs, we derive the existence and uniqueness of classical solutions of linear parabolic second order SPDEs by partitioning the time interval and passing to the limit. The methods we use allow us to improve on previously known results in the continuous case and to derive new ones in the jump case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bismut, J.-M.: Mécanique Aléatoire. Lecture Notes in Mathematics, vol. 866. Springer, Berlin (1981). With an English summary

  2. Da Prato, G., Tubaro, L.: Some remarks about backward Itô formula and applications. Stoch. Anal. Appl. 16(6), 993–1003 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. De Marco, G., Gorni, G., Zampieri, G.: Global inversion of functions: an introduction. NoDEA Nonlinear Differ. Equ. Appl. 1(3), 229–248 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fujiwara, T., Kunita, H.: Stochastic differential equations of jump type and Lévy processes in diffeomorphisms group. J. Math. Kyoto Univ. 25(1), 71–106 (1985)

    MATH  MathSciNet  Google Scholar 

  5. Gerencsér, M., Gyöngy, I., Krylov, N.V.: On the solvability of degenerate stochastic partial differential equations in Sobolev spaces. arXiv preprint. arXiv:1404.4401 (2014)

  6. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

  7. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. Graduate Studies in Mathematics, vol. 96. American Mathematical Society, Providence, RI (2008)

  8. Krylov, N.V., Rozovskiĭ, B.L.: Characteristics of second-order degenerate parabolic Itô equations. Trudy Sem. Petrovsk. 8, 153–168 (1982)

    MATH  Google Scholar 

  9. Kunita, H.: Convergence of stochastic flows with jumps and Lévy processes in diffeomorphisms group. Ann. Inst. H. Poincaré Probab. Stat. 22(3), 287–321 (1986)

    MATH  MathSciNet  Google Scholar 

  10. Kunita, H.: Stochastic differential equations with jumps and stochastic flows of diffeomorphisms. In: Itô’s Stochastic Calculus and Probability Theory, pp. 197–211. Springer, Tokyo (1996)

  11. Kunita, H.: Stochastic Flows and Stochastic Differential Equations. Cambridge Studies in Advanced Mathematics, vol. 24. Cambridge University Press, Cambridge (1997). Reprint of the 1990 original

  12. Kunita, H.: Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms. In: Real and Stochastic Analysis. Trends in Mathematics, pp. 305–373. Birkhäuser Boston, Boston (2004)

  13. Leahy, J.-M., Mikulevicius, R.: On classical solutions of linear stochastic integro-differential equations. arXiv preprint. arXiv:1404.0345 (2014)

  14. Liptser, R.Sh., Shiryayev, A.N.: Theory of Martingales. Mathematics and Its Applications (Soviet Series), vol. 49. Kluwer, Dordrecht (1989). Translated from the Russian by K. Dzjaparidze

  15. Meyer, P.A.: Flot D’une Equation Differentielle Stochastique (d’après Malliavin, Bismut, Kunita), vol. 850, pp. 103–117. Springer, Berlin (1981)

    Google Scholar 

  16. Meyer-Brandis, T.: Stochastic Feynman-Kac equations associated to Lévy-Itô diffusions. Stoch. Anal. Appl. 25(5), 913–932 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mikulevičius, R.: Properties of solutions of stochastic differential equations. Litovsk. Mat. Sb. 23(4), 18–31 (1983)

    MathSciNet  Google Scholar 

  18. Ocone, D., Pardoux, É.: A generalized Itô-Ventzell formula. Application to a class of anticipating stochastic differential equations. Ann. Inst. H. Poincaré Probab. Stat. 25(1), 39–71 (1989)

    MATH  MathSciNet  Google Scholar 

  19. Priola, E.: Stochastic flow for SDEs with jumps and irregular drift term. arXiv preprint. arXiv:1405.2575

  20. Qiao, H., Zhang, X.: Homeomorphism flows for non-Lipschitz stochastic differential equations with jumps. Stoch. Process. Appl. 118(12), 2254–2268 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rozovskiĭ, B.L.: Stochastic Evolution Systems: Linear Theory and Applications to Nonlinear Filtering. Mathematics and its Applications (Soviet Series), vol. 35. Kluwer, Dordrecht (1990). Translated from the Russian by A. Yarkho

  22. Zhang, X.: Degenerate irregular SDEs with jumps and application to integro-differential equations of Fokker-Planck type. Electron. J. Probab. 18(55), 25 (2013)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James-Michael Leahy.

Appendix

Appendix

Let V be an arbitrary Banach space. The following lemma and its corollaries are indispensable in this paper.

Lemma 5.1

Let \(Q\subseteq {\mathbf {R}}^{d}\) be an open bounded cube, \(p\ge 1\), \(\delta \in (0,1]\), and f be a V-valued integrable function on Q such that

$$\begin{aligned} \left[ f\right] _{\delta ;p;Q;V}:=\left( \int _{Q}\int _{Q}\frac{ |f(x)-f(y)|_{V}^{p}}{|x-y|^{2d+\delta p}}dxdy\right) ^{1/p}<\infty . \end{aligned}$$

Then f has a \({\mathcal {C}}^{\delta }(Q;V)\)-modification and there is a constant \( N=N(d,\delta ,p )\) independent of f and Q such that

$$\begin{aligned}{}[f]_{\delta ;Q;V}\le N\left[ f\right] _{\delta ,p;Q;V} \end{aligned}$$

and

$$\begin{aligned} \sup _{x\in Q}|f(x)| _{V}\le N| Q| ^{\delta /d}[f] _{\delta ;p;Q;V}+|Q| ^{-1/p}\left( \int _{Q}|f(x)| _{V}^{p}dx\right) ^{1/p}, \end{aligned}$$

where |Q| is the volume of the cube.

Proof

If \(V={\mathbf {R}}\), then the existence of a continuous modification of f and the estimate of \(\left[ f\right] _{\delta ;Q}\) follows from Lemma 2 and Exercise 5 in Chap. 10, Sect. 1, in [7]. The proof for a general Banach space is the same. For all \(x\in Q\), we have

$$\begin{aligned} |f(x)|_{V}&\le \frac{1}{|Q|}\int _{Q}| f(x)-f(y)|_{V}dy+\frac{1}{|Q|} \int _{Q}| f(y)|_{V}dy \\&\le N\frac{1}{|Q|}\left[ f\right] _{\delta ,p;Q}\int _{Q}|x-y|^{\delta }dy+\frac{1}{| Q|}\int _{Q}| f(y)|_V dy \\&\le N|Q|^{\delta /d}[f] _{\delta ,p;Q}+| Q|^{-1/p}\left( \int _{Q}| f(y)| _{V}^{p}dy\right) ^{1/p}, \end{aligned}$$

which proves the second estimate. \(\square \)

The following is a direct consequence of Lemma 1.

Corollary 5.2

Let \(p\ge 1\), \(\delta \in (0,1]\), and f be a V-valued function on \({\mathbf {R}}^d\) such that

$$\begin{aligned} |f| _{\delta ;p;V}:=\left( \int _{{\mathbf {R}}^d}|f(x)|^p_Vdx+ \int _{|x-y|<1}\frac{ |f(x)-f(y)|_{V}^{p}}{|x-y|^{2d+\delta p}}dxdy\right) ^{1/p}<\infty . \end{aligned}$$

Then f has a \({\mathcal {C}}^{\delta }({\mathbf {R}}^d;V)\)-modification and there is a constant \( N=N(d,\delta , p)\) independent of f such that

$$\begin{aligned} | f| _{\delta ;V}\le N| f| _{\delta ;p;V}. \end{aligned}$$

Corollary 5.3

Let X be a V-valued random field defined on \({\mathbf {R}}^{d}\). Assume that for some \(p\ge 1\), \(l\ge 0,\) and \( \beta \in (0,1]\) with \(\beta p>d\) there is a constant \(\bar{N}>0\) such that for all \(x,y\in {\mathbf {R}}^{d}\),

$$\begin{aligned} {\mathbf {E}}\left[ |X(x)|_{V}^{p}\right] \le \bar{N}r_{1}(x)^{lp} \end{aligned}$$
(5.14)

and

$$\begin{aligned} {\mathbf {E}}\left[ |X(x)-X(y)|_{V}^{p}\right] \le \bar{N}\left[ r_{1}(x)^{lp}+r_1(y)^{lp}\right] |x-y|^{\beta p}. \end{aligned}$$
(5.15)

Then for all \(\delta \in (0,\beta -\frac{d}{p})\) and \(\epsilon >\frac{d}{p}\) , there exists a \({\mathcal {C}}^{\delta }({\mathbf {R}}^{d};V)\)-modification of \( r_{1}^{-(l+\epsilon )}X\) and a constant \(N=N(d,p,\delta ,\epsilon )\) such that

$$\begin{aligned} {\mathbf {E}}\left[ |r_{1}^{-(l+\epsilon )}X|_{\delta }^{p}\right] \le N\bar{N}. \end{aligned}$$

Proof

Fix \(\delta \in (0,\beta -\frac{d}{p})\) and \(\epsilon >\frac{d}{p}\). Owing to (5.14), there is a constant \(N=N(d,p,\bar{N},\delta ,\epsilon )\) such that

$$\begin{aligned} \int _{{\mathbf {R}}^{d}}{\mathbf {E}}\left[ |r_{1}(x)^{-(l+\epsilon )}X(x)|_{V}^{p}\right] dx\le \bar{N}\int _{{\mathbf {R}}^{d}}r_{1}(x)^{-p\epsilon }dx\le N\bar{N}. \end{aligned}$$

Appealing to (5.15) and (3.19), we find that there is a constant \(N=N(d,p,\delta ,\epsilon )\) such that

$$\begin{aligned}&\int _{|x-y|<1}\frac{{\mathbf {E}}\left[ |r_{1}(x)^{-(l+\epsilon )}X(x)-r_{1}(y)^{-(l+\epsilon )}X(y)|_{V}^{p}\right] }{|x-y|^{2d+\delta p}}dxdy\\&\quad \le \bar{N}\int _{|x-y|<1}\frac{r_{1}(x)^{-p\epsilon }+r_{1}(y)^{-p\epsilon }}{ |x-y|^{2d-(\beta -\delta )p}}dxdy\\&\quad \quad +\,\bar{N}\int _{|x-y|<1}\frac{ r_{1}(y)^{pl}|r_{1}(x)^{-(l+\epsilon )}-r_{1}(y)^{-(l+\epsilon )}|^{p}}{ |x-y|^{2d+\delta p}}dxdy\\&\quad \le N\bar{N}+N\bar{N}\int _{|x-y|<1}\frac{r_{1}(x)^{-p(1+\epsilon )}+r_{1}(y)^{-p(1+\epsilon )}}{|x-y|^{2d-(1-\delta )p}}dxdy\le N\bar{N}. \end{aligned}$$

Therefore, \({\mathbf {E}}[r_{1}^{-(l+\epsilon )}X]_{\delta ,p}^{p}\le N\bar{N}\), and hence, by Corollary 5.3, \(r_{1}^{-(l+\epsilon )}X\) has a \({\mathcal {C}}^{\delta }({\mathbf {R}}^{d};V)\)-modification and the estimate follows immediately. \(\square \)

Corollary 5.4

Let \((X^{(n)})_{n\in {\mathbf {N}}}\) be a sequence of V-valued random fields defined on \( {\mathbf {R}}^{d}\). Assume that for some \(p\ge 1\), \(l\ge 0\) and \(\beta \in (0,1],\) with \(\beta p>d\) there is a constant \(\bar{N}>0\) such that for all \( x,y\in {\mathbf {R}}^{d}\) and \(n\in {\mathbf {N}}\),

$$\begin{aligned} \lim _{n\rightarrow \infty }\int _{\zeta <|x-y|<1 }\frac{{\mathbf {E}}\left[ |r_{1}(x)^{- (l+\epsilon )}X_{n}(x)-r_{1}(y)^{-(l+\epsilon )}X_{n}(y)|_{V}^{p}\right] }{{|x-y|^{2d+\delta p}}}dxdy=0. \end{aligned}$$

and

$$\begin{aligned} {\mathbf {E}}\left[ |X^{(n)}(x)-X^{(n)}(y)|_{V}^{p}\right] \le \bar{N}(r_{1}(x)^{lp}+r_1(y)^{lp})|x-y|^{\beta p}. \end{aligned}$$

Moreover, assume that for all \(x\in {\mathbf {R}}^{d}\), \( \lim _{n\rightarrow \infty }{\mathbf {E}}\left[ |X^{(n)}(x)|^{p}\right] = 0. \) Then for all \(\delta \in (0,\beta -\frac{d}{p})\) and \(\epsilon >\frac{d}{p}\),

$$\begin{aligned} \lim _{n\rightarrow \infty }{\mathbf {E}}\left[ |r_{1}^{-(l+\epsilon )}X^{(n)}|_{\delta }^{p}\right] =0. \end{aligned}$$

Proof

Fix \(\delta \in (0,\beta -\frac{d}{p})\) and \(\epsilon >\frac{d}{p}\). Using the Lebesgue dominated convergence theorem, we attain

$$\begin{aligned} \lim _{n\rightarrow \infty }\int _{{\mathbf {R}}^{d}}{\mathbf {E}}\left[ |r_{1}(x)^{-(l+\epsilon )}X^{(n)}(x)|_{V}^{p}\right] dx=0, \end{aligned}$$

and therefore for all \(\zeta \in (0,1)\),

$$\begin{aligned} \lim _{n}\int _{\zeta <|x-y|<1 }\frac{{\mathbf {E}}\left[ |r_{1}(x)^{-(l+\epsilon )}X_{n}(x)-r_{1}(y)^{-(l+\epsilon )}X_{n}(y)|_{V}^{p}\right] }{|x-y|^{2d+\delta p}} dxdy=0. \end{aligned}$$

By repeating the proof of Corollary 5.3, we obtain that there is a constant N such that

$$\begin{aligned}&\int _{|x-y|\le \zeta }\frac{{\mathbf {E}}\left[ |r_{1}(x)^{-(l+\epsilon )}X^{(n)}(x)-r_{1}(y)^{-(l+\epsilon )}X^{(n)}(y)|_{V}^{p}\right] }{|x-y|^{2d+\delta p}}dxdy\\&\quad \le \bar{N}\int _{|x-y|\le \zeta }\frac{r_{1}(x)^{-p\epsilon }+r_{1}(y)^{-p\epsilon }}{ |x-y|^{2d+(\delta -\beta )p}}dxdy\\&\quad \quad +\,\bar{N}\int _{|x-y|\le \zeta }\frac{ r_{1}(x)^{-p(1+\epsilon )}+r_{1}(y)^{-p(1+\epsilon )}}{|x-y|^{2d+(\delta -1)p}}dxdy\\&\quad \le \bar{N}\zeta ^{\beta p-\delta p-d}. \end{aligned}$$

Therefore, \(\lim _{n\rightarrow \infty }{\mathbf {E}}\left[ [r_{1}^{-(l+\epsilon )}X]_{\delta ,p}^{p}\right] =0\), and the statement is confirmed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leahy, JM., Mikulevičius, R. On some properties of space inverses of stochastic flows. Stoch PDE: Anal Comp 3, 445–478 (2015). https://doi.org/10.1007/s40072-015-0056-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-015-0056-8

Keywords

Mathematics Subject Classification

Navigation