Skip to main content
Log in

An Informatics Based Approach to Reduce the Grain Size of Cast Hadfield Steel

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

Materials Informatics concept using computational intelligence based approaches are employed to bring out the significant alloying additions to achieve grain refinement in cast Hadfield steel. Castings of Hadfield steels used for railway crossings, requires fine grained austenitic structure. Maintaining proper grain size of this component is very crucial in order to achieve the desired properties and service life. This work studies the important variables affecting the grain size of such steels which includes the compositional and processing variables. The computational findings and prior knowledge is used to design the alloy, which is subjected to a few trials to validate the findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Pribulová, J. Babic, D. Baricová, Influence of Hadfield´s steel chemical composition on its mechanical properties. Chem. Listy 105, s430–s432 (2011)

    Google Scholar 

  2. E. Bayraktar, F.A. Khalid, C. Levaillant, Deformation and fracture behaviour of high manganese austenitic steel. J. Mater. Process. Technol. 147, 145–154 (2004)

    Article  Google Scholar 

  3. S.A. Balogun, D.E. Esezobor, J.O. Agunsoye, Effect of melting temperature on the wear characteristics of austenitic manganese steel. J. Miner. Mater. Charact. Eng. 7, 277–289 (2008)

    Google Scholar 

  4. ASM Handbook, Volume 1. Properties and selection: irons, steels, and high-performance alloys—austenitic manganese steels. ASM Handbook Committee, pp. 822–840

  5. K. Rajan, Materials informatics. Mater. Today 8, 38–45 (2005)

    Article  Google Scholar 

  6. B.M. Wilamowski, Methods of computational intelligence, in Proceedings of the IEEE International Conference an Industrial Technology, Tunisia, 1–8 December 2004

  7. H.K. Lam, S.S. H. Ling, H.T. Nguyen, Computational Intelligence and Its Applications: Evolutionary Computation, Fuzzy Logic, Neural Network and Support Vector Machine Techniques (Imperial College Press, London, 2012)

  8. S. Datta, P.P. Chattopadhyay, Soft computing techniques in advancement of structural metals. Int. Mater. Rev. 58, 475–504 (2013)

    Article  Google Scholar 

  9. J.A. Anderson, An Introduction to Neural Networks (MIT Press, Cambridge, 1995)

    MATH  Google Scholar 

  10. S. Kumar, Neural Networks—A Classroom Approach (Tata McGraw-Hill Publishing Company Limited, New Delhi, 2004)

    Google Scholar 

  11. L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Rajasekaran, G.A.V. Pai, Neural Networks, Fuzzy Logic and Genetic Algorithms (Prentice-Hall of India Pvt. Ltd., New Delhi, 2004)

    Google Scholar 

  13. L.A. Zadeh, Fuzzy logic. Computer 21, 83–93 (1988)

    Article  Google Scholar 

  14. L.A. Zadeh, Knowledge representation in fuzzy logic. IEEE Trans. Knowl. Data Eng. 1, 89–100 (1989)

    Article  Google Scholar 

  15. Z. Pawlak, Rough sets. Int. J. Comput. Inform. Sci. 11, 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. T.Y. Lin, Introduction to the special issue on rough sets. Int. J. Approx. Reason. 15, 287–289 (1996)

    Article  Google Scholar 

  17. Z. Pawlak, Rough set approach to knowledge-based decision support. Eur. J. Oper. Res. 99, 48–57 (1997)

    Article  MATH  Google Scholar 

  18. J. Komorowski, L. Polkowski, A. Skowron, Rough Sets: A Tutorial, 1998, www.let.uu.nl/esslli/Courses/skowron/skowron.ps. Accessed 18 December 2008)

  19. N. Chakraborti, Genetic algorithms in materials design and processing. Int. Mater. Rev. 49, 246–260 (2004)

    Article  Google Scholar 

  20. K. Deb, Multiobjective Optimization Using Evolutionary Algorithms (Wiley, Chichester, 2001)

    MATH  Google Scholar 

  21. A.G. Jackson, Z. Pawlak, S.R. LeClair, Rough sets applied to the discovery of materials knowledge. J. Alloy. Compd. 279, 14–21 (1998)

    Article  Google Scholar 

  22. S. Dey, P. Dey, S. Datta, J. Sil, Rough set approach to predict the strength and ductility of TRIP steel. Mater. Manuf. Process. 24, 150–154 (2009)

    Article  Google Scholar 

  23. P. Dey, S. Dey, S. Datta, J. Sil, Dynamic discreduction using rough sets. Appl. Soft Comput. 11, 3887–3897 (2011)

    Article  Google Scholar 

  24. S. Datta, M.K. Banerjee, Kohonen network modelling for the strength of thermomechanically processed HSLA steel. ISIJ Int. 44, 846–851 (2004)

    Article  Google Scholar 

  25. S. Datta, M.K. Banerjee, Mapping the input–output relationship in HSLA steels through expert neural network. Mater. Sci. Eng. A 420, 254–264 (2006)

    Article  Google Scholar 

  26. M. Kundu, S. Ganguly, S. Datta, P.P. Chattopadhyay, Simulating time temperature transformation diagram of steel using artificial neural network. Mater. Manuf. Process 24, 169–173 (2009)

    Article  Google Scholar 

  27. T. Bhattacharyya, S.B. Singh, S.S. Dey, S. Bhattacharyya, W. Bleck, D. Bhattacharjee, Microstructural prediction through artificial neural network (ANN) for development of transformation induced plasticity (TRIP) aided steel. Mater. Sci. Eng. A 565, 148–157 (2013)

    Article  Google Scholar 

  28. J.D. Olden, M.K. Joy, R.G. Death, An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol. Model. 178, 389–397 (2004)

    Article  Google Scholar 

  29. I. Mohanty, D. Bhattacharjee, S. Datta, Designing cold rolled IF steel sheets with optimized tensile properties using ANN and GA. Comput. Mater. Sci. 50, 2331–2337 (2011)

    Article  Google Scholar 

  30. A. Kusiak, Rough set theory: a data mining tool for semiconductor manufacturing. IEEE Trans. Electron. Packag. Manuf. 24, 44–50 (2001)

    Article  Google Scholar 

  31. A. Sinha, S.S. Dey, P.P. Chattopadhyay, S. Datta, Optimization of mechanical property and shape recovery behavior of Ti-(~49 at.%) Ni alloy using artificial neural network and genetic algorithm. Mater. Des. 46, 227–234 (2013)

    Article  Google Scholar 

  32. P. Das, B.K. Bhattacharyay, S. Datta, A comparative study for modeling of hot-rolled steel plate classification using a statistical approach and neural-net systems. Mater. Manuf. Process. 21, 747–755 (2006)

    Article  Google Scholar 

  33. M. Mukherjee, S.B. Singh, Artificial neural network: some applications in physical metallurgy of steels. Mater. Manuf. Process. 24, 198–208 (2009)

    Article  Google Scholar 

  34. H.K.D.H. Bhadeshia, Neural networks in materials science. ISIJ Int. 39, 966–979 (1999)

    Article  Google Scholar 

  35. I.H. Jeong, J.S. Lee, S.M. Jung, J.G. Kim, Y. Sasaki, Grain refinement of α-iron by repeated carburizing and decarburizing reactions. ISIJ Int. 51, 805–811 (2011)

    Article  Google Scholar 

  36. P.A. Thornton, The influence of nonmetallic inclusions on the mechanical properties of steel: a review. J. Mater. Sci. 6, 347–356 (1971)

    Article  Google Scholar 

  37. ASM Handbook, Vol. 4, Heat Treating (ASM International, 1991)

  38. M.A. Razzak, Heat treatment and effects of Cr and Ni in low alloy steel. Bull. Mater. Sci. 34, 1439–1445 (2011)

    Article  Google Scholar 

  39. J.W. Tukey, Exploratory data analysis (Addison-Wesley, Reading, 1977)

    MATH  Google Scholar 

  40. A.L. Edwards, “The Correlation Coefficient.” Ch. 4, in An Introduction to Linear Regression and Correlation (W.H. Freeman, San Francisco, 1976), pp. 33–46

  41. S. Preston, G. Hale, J. Nutting, Overheating behaviour of a grain-refined low-sulphur steel. Mater. Sci. Technol. 1, 92–197 (1985)

    Article  Google Scholar 

  42. J.O. Agunsoye, T.S. Isaac, A.A. Abiona, On the comparison of microstructure characteristics and mechanical properties of high chromium white iron with the Hadfield austenitic manganese steel. J. Miner. Mater. Charact. Eng. 1, 24–28 (2013)

    Google Scholar 

  43. M.B. Limooei, S. Hosseini, Optimization of properties and structure with addition of titanium in Hadfield steels, In Proceedings of the Conference Metal, Czech Republic, EU, 23–25 May 2012

  44. M. Mizumoto, S. Sasaki, T. Ohgai, A. Kagawa, Development of new additive for grain refinement of austenitic stainless steel. Int. J. Cast Met. Res. 21, 1–4 (2008)

    Article  Google Scholar 

  45. G. Fedorko, V. Molnár, A. Pribulová, P. Futaš, D. Baricová, The influence of Ni and Cr-content on mechanical properties of Hadfield steel, In Proceedings of the Conference Metal, Czech Republic, EU, 18–20 May 2011

  46. F. Haakonsen, Optimizing of Strømhard austenitic manganese steel. Thesis for the degree of Philosophiae Doctor, Norwegian University of Science and Technology, 2009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Dey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Pathak, S., Sheoran, S. et al. An Informatics Based Approach to Reduce the Grain Size of Cast Hadfield Steel. J. Inst. Eng. India Ser. D 97, 1–9 (2016). https://doi.org/10.1007/s40033-015-0084-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-015-0084-6

Keywords

Navigation