Skip to main content

Advertisement

Log in

Cytotoxic Effect of Palladium Nanoparticles Synthesized From Syzygium aromaticum Aqueous Extracts and Induction of Apoptosis in Cervical Carcinoma

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Among the various nanoparticles explored for diverse biological applications, palladium nanoparticles still remain far too behind in the field of cancer therapeutics. Nanoparticles synthesized by chemical methods aggregate in physiological conditions hindering their biomedical applications. Therefore, in the present study, a plant mediated green synthesis approach for palladium nanoparticle preparation from Syzygium aromaticum was reported and the biocompatibility and anticancer activity of the eco-friendly synthesized palladium nanoparticles against human cervical carcinoma was evaluated. The as-synthesized palladium nanoparticles were characterized by various analytical techniques such as, UV–vis spectroscopy, transmission electron microscope, dynamic light scattering, zeta potential, energy dispersive X-ray spectroscopy, X-ray diffraction and fourier transform infrared spectroscopy. The biocompatibility of palladium nanoparticles were verified by incubating with RBCs and cytotoxic studies revealed a dose dependent cytotoxic effect with half maximal inhibitory concentration values of 15 ± 0.5 µg/mL against HeLa cells at 48 h incubation. Further, the induction of apoptosis was evidenced by fluorescence microscopic study. Semi-quantitative RT-PCR analysis evidenced the activation of cytochrome c and caspase 3 and down regulation of Bcl-2 and Bcl-xL. In vivo antitumor studies showed significant suppression of tumor growth against HeLa tumor xenograft models. The results suggest that palladium nanoparticles can be synthesized using clove buds; they are biocompatible possessing significant anticancer activity against human cervical carcinoma, indicating the great potential of palladium nanoparticles in relevant biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mukherjee S, Dey S, Bhattacharya RK, Roy M (2009) Isothiocyanates sensitize the effect of chemotherapeutic drugs via modulation of protein kinase C and telomerase in cervical cancer cells. Mol Cell Biochem 330:9–22

    Article  CAS  PubMed  Google Scholar 

  2. Scarinci IC, Garcia FA, Kobetz E, Partridge EE, Brandt HM, Bell MC, Dignan M, Ma GX, Daye JL, Castle PE (2010) Cervical cancer prevention: new tools and old barriers. Cancer 116:2531–2542

    PubMed  PubMed Central  Google Scholar 

  3. Johnston SRD (1997) Acquired tamoxifen resistance in human breast cancer-potential mechanisms and clinical implications. Anticancer Drugs 8:911–930

    Article  CAS  PubMed  Google Scholar 

  4. Kato S, Endoh H, Masuhiro Y (1995) Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270:1491–1494

    Article  CAS  PubMed  Google Scholar 

  5. Brown K (2002) Breast cancer chemoprevention: risk-benefit effects of the antioestrogen tamoxifen. Expert Opin Drug Saf 1(3):253–267

    Article  CAS  PubMed  Google Scholar 

  6. Smith LL, Brown K, Carthew P (2000) Chemoprevention of breast cancer by tamoxifen: risks and opportunities. Crit Rev Toxicol 30:571–594

    Article  CAS  PubMed  Google Scholar 

  7. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104–105115

    Article  Google Scholar 

  8. Sayyad AS, Balakrishnan K, Ci L, Kabbani AT, Vajtai R, Ajayan PM (2012) Synthesis of iron nanoparticles from hemoglobin and myoglobin. Nanotechnology 23:055602–055607

    Article  PubMed  Google Scholar 

  9. Shanthi K, Vimala K, Gopi D, Kannan S (2015) Fabrication of a pH responsive DOX conjugated PEGylated palladium nanoparticle mediated drug delivery system: an in vitro and in vivo evaluation. RSC Adv 5:44998–45014

    Article  CAS  Google Scholar 

  10. Petla RK, Vivekanandhan S, Misra M, Mohanty AK, Satyanarayana N (2012) Soybean (Glycine max) leaf extract based green synthesis of palladium nanoparticles. J Biomater Nanobiotechnol 3:14–19

    Article  CAS  Google Scholar 

  11. Hebbalalu D, Lalley J, Nadagouda MN, Varma RS (2013) Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain Chem Eng 1:703–712

    Article  CAS  Google Scholar 

  12. Nadagouda MN, Verma RS (2008) Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem 10:859–862

    Article  CAS  Google Scholar 

  13. Sathishkumar M, Sneha K, Kwak In Seob, Mao Juan, Tripathy SJ, Yun YS (2009) Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extrac. J Hazard Mater 171:400–404

    Article  CAS  PubMed  Google Scholar 

  14. Kanchana A, Devarajan S, Ayyappan SR (2010) Green synthesis and characterization of palladium nanoparticles and its conjugates from Solanum trilobatum leaf extract. Nano-Micro Lett 2:169–176

    Article  CAS  Google Scholar 

  15. Roopan SM, Bharathi A, Kumar R, Khanna VG, Prabhakarn A (2012) Acaricidal, insecticidal, and larvicidal efficacy of aqueous extract of Annona squamosa L. peel as biomaterial for the reduction of palladium salts into nanoparticles. Colloids Surf B Biointerfaces 92:209–212

    Article  CAS  PubMed  Google Scholar 

  16. Jia L, Zhang Q, Li Q, Song H (2009) The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology 20:385601

    Article  PubMed  Google Scholar 

  17. Viet LN, Duc CN, Hirohito H, Michitaka O, Tomokatsu H, Masayuki N (2010) Chemical synthesis and characterization of palladium nanoparticles. Adv Nat Sci Nanosci Nanotechnol 1:035012–035017

    Article  Google Scholar 

  18. Nassar MI (2006) Flavonoid triglycosides from the seeds of Syzygium aromaticum. Carbohydr Res 341:160–163

    Article  CAS  PubMed  Google Scholar 

  19. Miyazawa M, Hisama M (2003) Antimutagenic Activity of Phenylpropanoids from Clove (Syzygium aromaticum). J Agric Food Chem 51:6413–6422

    Article  CAS  PubMed  Google Scholar 

  20. Nassar MI, Gaara AH, El-Ghorab AH, Farrag ARH, Shen H, Huq E, Mabry TJ (2007) Chemical constituents of clove (Syzygium aromaticum, Fam. Myrtaceae) and their antioxidant activity. Rev. Latinoamer. Quím 35:47–57

    CAS  Google Scholar 

  21. Yang X, Li Q, Wang H, Huang J, Lin L, Wang W, Sun D, Su Y, Opiyo JB, Hong L, Wang Y, He N, Jia L (2010) Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J Nanoparticle Res 12:1589–1598

    Article  CAS  Google Scholar 

  22. Ho PF, Chi KM (2004) Size-controlled synthesis of Pd nanoparticles from β-diketonato complexes of palladium. Nanotechnology 15:1059–1064

    Article  CAS  Google Scholar 

  23. Nemamcha A, Rehspringer J, Khatmi D (2006) Synthesis of palladium nanoparticles by sonochemical reduction of palladium(II) nitrate in aqueous solution. J Phys Chem B 110:383–387

    Article  CAS  PubMed  Google Scholar 

  24. Teranishi T, Miyake M (1998) Size control of palladium nanoparticles and their crystal structures. Chem Mater 10:594–600

    Article  CAS  Google Scholar 

  25. Maeda H, Matsumura Y (1989) Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carr Syst 6:193–210

    CAS  Google Scholar 

  26. Li C (2002) Poly (l-glutamic acid)—anticancer drug conjugates. Adv Drug Deliv Rev 54:695–713

    Article  CAS  PubMed  Google Scholar 

  27. Benita S, Levy MY (1993) Submicron emulsions as colloidal drug carriers for intravenous administration: comprehensive physicochemical characterization. J Pharm Sci 82:1069–1079

    Article  CAS  PubMed  Google Scholar 

  28. He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31:3657–3666

    Article  CAS  PubMed  Google Scholar 

  29. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sonia S, Kumar PS, Mangalaraj D, Ponpandian N, Viswanathan C (2013) Influence of growth and photocatalytic properties of copper selenide (CuSe) nanoparticles using reflux condensation method. Appl Surf Sci 283:802–807

    Article  CAS  Google Scholar 

  31. Xu L, Wu XC, Zhu J (2008) Green preparation and catalytic application of Pd nanoparticles. Nanotechnology 19:305603

    Article  PubMed  Google Scholar 

  32. Cheng FY, Su CH, Yang YS, Yeh CS, Tsai CY, Wu CL, Wu MT, Shieh DB (2005) Characterization of aqueous dispersions of Fe(3)O(4) nanoparticles and their biomedical applications. Biomaterials 26:729–738

    Article  CAS  PubMed  Google Scholar 

  33. Singhal JP, Ray AR (2002) Synthesis of blood compatible polyamide block copolymers. Biomaterials 23:1139–1145

    Article  CAS  PubMed  Google Scholar 

  34. Raghunandan D, Ravishankar B, Sharanbasava G, Mahesh DB, Harsoor V, Manjunath SY, Bhagawanraju M, Venkataraman A (2011) Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nano 2:57–65

    Article  CAS  Google Scholar 

  35. Vivek R, Thangam R, Muthuchelian K, Gunasekaran P, Kaveri K, Kannan S (2012) Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and it’s in vitro cytotoxic effect on MCF-7 cells. Process Biochem 47:2405–2410

    Article  CAS  Google Scholar 

  36. Dam DHM, Lee JH, Sisco PN, Co DT, Zhang M, Wasielewski MR, Odom TW (2012) Direct observation of nanoparticle—cancer cell nucleus interactions. ACS Nano 6:3318–3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    Article  CAS  PubMed  Google Scholar 

  38. O’Brien ME, Wigler N, Inbar M (2004) Reduced cardiotoxicity and comparable efficacy in a Phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 15:440–449

    Article  PubMed  Google Scholar 

  39. Asha Rani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS 3:279–290

    CAS  Google Scholar 

  40. Thangam R, Gunasekaran P, Kaveri K, Sridevi G, Sundarraj S, Paulpandi M, Kannan S (2012) A novel disintegrin protein from Naja naja venom induces cytotoxicity and apoptosis in human cancer cell lines in vitro. Process Biochem 47:1243–1249

    Article  CAS  Google Scholar 

  41. Don AS, Hogg PJ (2004) Mitochondria as cancer drug targets. Trends Mol Med 10:372–378

    Article  CAS  PubMed  Google Scholar 

  42. Grad JM, Cepero E, Boise LH (2001) Mitochondria as targets for established and novel anti-cancer agents. Drug Resist Updat 4:85–91

    Article  CAS  PubMed  Google Scholar 

  43. Huang Y, He L, Liu W, Fan C, Zheng W, Wong YS, Chen T (2013) Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials 34:7106–7116

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research work was partially supported by UGC–Basic Science for Research (BSR)—RFSMS (Ref. G2/3142/UGC–BSR–RFSMS/2013) and DST-Nano-mission Project, Department of Science and Technology, Nano-mission division, New Delhi (Ref. SR/NM/NS-60/2010 dt. 08-07-2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soundarapandian Kannan.

Ethics declarations

Conflict of interest

No conflict of interest was reported by the author of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

The hydrodynamic diameters of PdNPs with an average size of 20 ± 5 nm (PDI = 0.596 ± 0.01) (TIFF 24799 kb)

Fig. S2

Surface zeta potential value of the as-synthesized PdNPs. The zeta potential of the nanoparticles is negative and found to be −36.7 ± 0.65mVs (TIFF 25380 kb)

Fig. S3

EDX of clove buds synthesized PdNPs exhibiting strong Pd signals (TIFF 5650 kb)

Fig. S4

XRD patterns of clove buds synthesized PdNPs (TIFF 24183 kb)

Fig. S5

Apoptosis induced by PdNPs treated HeLa cells confirmed by semi-quantitative RT-PCR analysis of apoptotic related gene expressions. Expression of Bcl-2, Bcl-xL, Cytochrome c, and caspases-3 after treatment with two different concentration of PdNPs. β-actin used as internal control (TIFF 1194 kb)

Supplementary material 6 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanthi, K., Sreevani, V., Vimala, K. et al. Cytotoxic Effect of Palladium Nanoparticles Synthesized From Syzygium aromaticum Aqueous Extracts and Induction of Apoptosis in Cervical Carcinoma. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 87, 1101–1112 (2017). https://doi.org/10.1007/s40011-015-0678-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-015-0678-7

Keywords

Navigation