Skip to main content
Log in

Synthesis of Bimetallic Palladium/Zinc Oxide Nanocomposites Using Crocus sativus and Its Anticancer Activity via the Induction of Apoptosis in Cervical Cancer

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Palladium (Pd) and zinc oxide (ZnO) (Pd/ZnO NPs) bimettalic nanocomposites still lag much too far behind other nanoparticles investigated for various biological uses in the area of cancer treatments. Chemically created nanoparticles agglomerate under physiological conditions, impeding their use in biomedical applications. In this study, a straightforward and environmentally friendly method for creating bimetallic nanoparticles (NPs) by combining palladium (Pd) and zinc oxide (ZnO) using Crocus sativus extract (CS-Pd/ZnO NCs) was reported; the bio-synthesize bimetallic palladium/zinc oxide nanocomposites and their antioxidant and anti-cancer properties were assessed. The developed Pd/ZnO NPs were characterized using different approaches, including UV-vis, DLS, FTIR, EDX, and SEM analyses. The present investigation shows how nanocomposites are made, their distinctive properties, antioxidant activity, anticancer mechanisms, and their potential therapeutic applications. DPPH and ABTS tests were used to investigate antioxidant activity. Further, the effects of CS-Pd/ZnO NCs on HeLa cells were assessed using the cell viability, ROS generation, MMP levels, and induced apoptosis. Apoptosis induction was measured using an Annexin V-fluorescein isothicyanate assay. Cell DNA was stained with propidium iodide to evaluate the impact upon this cell cycle. Time-dependent cell death was carried on by CS-Pd/ZnO NCs. The maximum inhibitory effect was 59 ± 3.2 when dosages of 4.5 µg/mL or higher were delivered after 24 h of treatment. Additionally, the CS-Pd/ZnO NCs caused HeLa cells to undergo apoptosis. Apoptotic HeLa cells were present in 35.64% of the treated cells at 4.5 µg/mL, and the cell cycle arrest at G0/G1 phase occurred concurrently. According to these findings, the CS-Pd/ZnO NCs may be a promising candidate for the creation of brand-new cervical cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Anjum, S., Hashim, M., Malik, S. A., Khan, M., Lorenzo, J. M., Abbasi, B. H., & Hano, C. (2021). Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers, 13, 4570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2021). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer Journal for Clinicians, 68, 394–424.

    Article  Google Scholar 

  3. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLO-BOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer Journal for Clinicians, 71, 209–249.

    Article  Google Scholar 

  4. Zhou, Z. W., Long, H. Z., Xu, S. G., Li, F. J., Cheng, Y., Luo, H. Y., & Gao, L. C. (2022). Therapeutic effects of natural products on cervical cancer: Based on inflammatory pathways. Frontiers in Pharmacology, 13, 899208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Golais, F., & Mrázová, V. (2020). Human alpha and beta herpesviruses and cancer: Passengers or foes? Folia Microbiologia (Praha), 65, 439–449.

    Article  CAS  Google Scholar 

  6. Sudomová, M., Berchová-Bímová, K., Marzocco, S., Liskova, A., Kubatka, P., & Hassan, S. T. S. (2021). Berberine in human oncogenic herpesvirus infections and their linked cancers. Viruses, 13(2021), 1014.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kamran, S., Sinniah, A., Abdulghani, M. A. M., & Alshawsh, M. A. (2022). Therapeutic potential of certain terpenoids as anticancer agents: A scoping review. Cancers (Basel), 14, 1100.

    Article  CAS  PubMed  Google Scholar 

  8. Bijoy, M., Halima, K., Firoz, A., Nasim, A., Hurey, J. K., Uddin, Z., Barun, M. R., Mahmuda, K. S., Syed, H., Rowshanul, R. K., Ahasanur, H. M., & Rabbi, M. (2023). Biosynthesis of Bixa orellana seed extract mediated silver nanoparticles with moderate antioxidant, antibacterial and antiproliferative activity. Arabian Journal of Chemistry, 16, 104675.

    Article  Google Scholar 

  9. Behboodi, S., Baghbani-Arani, F., Abdalan, S., & Shandiz, S. (2019). Green engineered biomolecule-capped silver nanoparticles fabricated from Cichorium intybus extract: In vitro assessment on apoptosis properties toward human breast cancer (MCF-7) cells. Biological Trace Element Research, 187, 392–402.

    Article  CAS  PubMed  Google Scholar 

  10. Asnag, G. M., Oraby, A. H., & Abdelghany, A. M. (2019). Green synthesis of gold nanoparticles and its effect on the optical, thermal and electrical properties of carboxymethyl cellulose. Composites Part B: Engineering, 172, 436–446.

  11. Thomas, B., Vithiya, M., & Augustine Arul Prasad, B. S. (2019). T. Antioxidant and photo catalytic activity of aqueous leaf extract mediated green synthesis of silver nanoparticles using passiflora edulis f.flavicarpa. Materials Today: Proceedings, 14, 239–247.

    CAS  Google Scholar 

  12. Babaei, Z., Rezaei, B., Pisheh, M. K., & Afshar-Taromi, F. (2020). In situ synthesis of gold/silver nanoparticles and polyaniline as buffer layer in polymer solar cells. Materials Chemistry and Physics, 248, 122879.

    Article  CAS  Google Scholar 

  13. Shahanavaj, K., Anees, A., Ansari, A. M., Anis, A. C., Jakeera, B. S., & Azmat, A. K. (2018). Preparation, characterizations and in vitro cytotoxic activity of nickel oxide nanoparticles on HT-29 and SW620 colon cancer cell lines. 2018. https://doi.org/10.1016/j.jtemb.2018.11.003

  14. Menon, S., Jayakodi, S., Yadav, K. K., Somu, P., Isaq, M., Shanmugam, V. K., Chaitanyakumar, A., & Basavegowda, N. (2022). Preparation of paclitaxel-encapsulated bio-functionalized selenium nanoparticles and evaluation of their efficacy against cervical cancer. Molecules, 27, 7290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vimala, K., Sundarraj, S., Paulpandi, M., & Kannan, S. (2014). Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochemistry, 4, 160–172.

    Article  Google Scholar 

  16. Gengan, R., Anand, K., Phulukdaree, A., & Chuturgoon, A. (2013). A549 lung cell line activity of biosynthesized silver nanoparticles using Albizia adianthifolia leaf. Colloids and Surfaces B, 105, 87–91.

    Article  CAS  Google Scholar 

  17. Gunti, L., Dass, R. S., & Kalagatur, N. K. (2019). Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: Antioxidant, antimicrobial, and biocompatibility. Frontiers in Microbiology, 10, 931.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cao, Y., Dhahad, H. A., El–Shorbagy, M. A., Alijani, H. Q., Zakeri, M., Heydari, A., Bahonar, E., Slouf, M., Khatami, M., Naderifar, M., Iravani, S., Khatami, S., & Dehkord, F. F. (2021). Green synthesis of bimetallic ZnO–CuO nanoparticles and their cytotoxicity properties. Scientifc Reports, 11, 23479.

    Article  CAS  ADS  Google Scholar 

  19. Hoshyar, R., Khayati, G. R., Poorgholami, M., & Kaykhaii, M. (2016). A novel green one-step synthesis of gold nanoparticles using crocin and their anti-cancer activities. https://doi.org/10.1016/j.jphotobiol.2016.03.056

  20. Mary, T. A., Shanthi, K., Vimala, K., & Kannan, S. (2016). PEG functionalized selenium nanoparticles as a carrier of crocin to achieve anticancer synergism. RSC Advances, 6, 22936.

    Article  CAS  ADS  Google Scholar 

  21. Hoshyar, R., Bathaie, S. Z., & Sadeghizadeh, M. (2013). Crocin triggers the apoptosis through increasing the Bax/Bcl-2 ratio and caspase activation in human gastric adenocarcinoma, AGS, cells. DNA and Cell Biology, 32, 50–57.

    Article  CAS  PubMed  Google Scholar 

  22. Mushtaq, S. O., Sharma, R., Agrawal, A., Sharma, A., Kumar, S., Awasthi, K., Yadav, C. S., & Awasthi, A. (2022). Green synthesis of ZnO nanoparticles from saffron corm extract and their bactericidal activity. Materials Today: Proceedings, 69, 74–81.

    Google Scholar 

  23. Vimala, K., Maruthupandian, A., Thangaraj, R., & Kannan, S. (2021). Selenium tethered mesoporous silica nanocomposite enhances drug delivering efficiency to target breast cancer. Journal of Cluster Science, 32, 1475–1489.

    Article  CAS  Google Scholar 

  24. Meena, D., Vimala, K., & Kannan, S. (2022). Combined delivery of DOX and kaempferol using PEGylated gold nanoparticles to target colon cancer. Journal of Cluster Science, 33, 173–187.

    Article  CAS  Google Scholar 

  25. Joharatnam-Hogan, N., Shiu, K. K., & Khan, K. (2020). Challenges in the treatment of gastric cancer in the older patient. Cancer Treatment Reviews, 85, 101980.

    Article  PubMed  Google Scholar 

  26. Sun, H., Mohan, S. K., Chinnathambi, A., Alahmadi, T. A., Manikandan, V., Rengarajan, T., & Veeraraghavan, V. P. (2021). Green synthesized zinc oxide/neodymium nanocomposites from Avaram Senna flower extract induces apoptosis in gastric cancer AGS cell line through inhibition of the PI3K/AKT/mTOR signaling pathway. Journal of King Saud University – Science, 33(8), 101641.

    Article  Google Scholar 

  27. Kouhbanani, M. A. J., Sadeghipour, Y., Sarani, M., Sefidger, E., Ilkhani, S., & Amani, A. L. (2021). The inhibitory role of synthesized nickel oxide nanoparticles against Hep-G2, MCF-7, and HT-29 cell lines: The inhibitory role of NiO NPs against Hep-G2, MCF-7, and HT-29 cell lines. Green Chemistry Letters and Reviews, 14(3), 443–453.

    Article  CAS  Google Scholar 

  28. Rahdar, A., Hajinezhad, B., Sargazi, S., Barani, M., Bilal, M., & Kyzas, G. K. (2021). Deferasirox-loaded pluronic nanomicelles: Synthesis, characterization, in vitro and in vivo studies. Journal of Molecular Liquids, 323, 114605.

    Article  CAS  Google Scholar 

  29. Sargazi, S., Hajinezhad, M., Barani, M., Mukhtar, M., Rahdar, A., Baino, F., Karimi, P., & Pandey, S. (2021). F127/cisplatin microemulsions: In vitro, in vivo and computational studies. Applied Sciences, 11(7), 3006.

    Article  CAS  Google Scholar 

  30. Sivamaruthi, B. S., et al. (2019). Biogenic synthesis of silver palladium bimetallic nanoparticles from fruit extract of Terminalia chebula—In vitro evaluation of anticancer and antimicrobial activity. Journal of Drug Delivery Science and Technology, 51, 139–151.

    Article  CAS  Google Scholar 

  31. Gurgur, E., Oluyamo, S. S., Adetuyi, A. O., Omotunde, O. I., & Okoronkwo, A. E. (2020). Green synthesis of zinc oxide nanoparticles and zinc oxide–silver, zinc oxide–copper nanocomposites using Bridelia ferruginea as biotemplate. SN Applied Sciences2, 911.

  32. Cao, Y., et al. (2021). Ceramic magnetic ferrite nanoribbons: Eco-friendly synthesis and their antifungal and parasiticidal activity. Ceramics International, 48, 1–7.

    ADS  Google Scholar 

  33. Reshmy, R., et al. (2021). Nanobiocatalysts: Advancements and applications in enzyme technology. Bioresource Technology, 337, 125491.

    Article  CAS  PubMed  Google Scholar 

  34. Alijani, H. Q., et al. (2021). Biosynthesis of spinel nickel ferrite nanowhiskers and their biomedical applications. Scientific Reports, 11(1), 1–7.

    Article  Google Scholar 

  35. Khatami, M., et al. (2018). Waste-grass-mediated green synthesis of silver nanoparticles and evaluation of their anticancer, antifungal and antibacterial activity. Green Chemistry Letters and Reviews, 11(2), 125–134.

    Article  CAS  Google Scholar 

  36. Nazari-Vanani, R., et al. (2017). A novel self-nanoemulsifying formulation for sunitinib: Evaluation of anticancer efcacy. Colloids and Surfaces. B, Biointerfaces, 160, 65–72.

    Article  CAS  PubMed  Google Scholar 

  37. Rahdar, A., et al. (2020). Behavioral effects of zinc oxide nanoparticles on the brain of rats. Inorganic Chemistry Communications, 119, 1–14.

    Article  Google Scholar 

  38. Lomelí-Marroquín, D. (2019). Starch-mediated synthesis of mono-and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents. International Journal of Nanomedicine, 14(2019), 2171.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ghosh, S., et al. (2015). Novel platinum–palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: Anticancer and antioxidant activities. International Journal of Nanomedicine, 10, 7477.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Elemike, E. E., et al. (2019). Green synthesis of Ag, Au and Ag-Au bimetallic nanoparticles using Stigmaphyllon ovatum leaf extract and their in vitro anticancer potential. Materials Letters, 243, 148–152.

    Article  CAS  Google Scholar 

  41. Shanthi, K., Sreevani, V., Vimala, K., & Kannan, S. (2017). Cytotoxic effect of palladium nanoparticles synthesized from Syzygium aromaticum Aqueous extracts and induction of apoptosis in cervical carcinoma. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2017. https://doi.org/10.1007/s40011-015-0678-7

  42. Thomas, S., Gunasangkaran, G., Arumugam, V. A., & Muthukrishnan, S. (2022). Synthesis and characterization of Zinc Oxide nanoparticles of Solanum nigrum and its anticancer activity via the induction of apoptosis in Cervical Cancer. Biological Trace Element Research, 200, 2684–2697.

    Article  CAS  PubMed  Google Scholar 

  43. Vimala, K., Shanthi, K., Sundarraj, S., & Kannan, S. (2017). Synergistic effect of chemo-photothermal for breast cancer therapy using folic acid (FA) modified zinc oxide nanosheet. 2017. Journal of Colloid and Interface Science, 488, 92–108.

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Rajeshkumar, S., et al. (2018). Biosynthesis of zinc oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enyzme and Microbial Technology, 117, 91–95.

    Article  CAS  Google Scholar 

  45. Kalaiarasi, A., et al. (2018). Copper oxide nanoparticles induce anticancer activity in A549 lung cancer cells by inhibition of histone deacetylase. Biotechnology Letters, 40(2), 249–256.

    Article  CAS  PubMed  Google Scholar 

  46. Tang, Z. H., Chen, X., Wang, Z. Y., Chai, K., Wang, Y. F., Xu, X. H., Wang, X. W., Lu, J. H., Wang, Y. T., Chen, X. P., & Lu, J. J. (2016). Induction of C/EBP homologous proteinmediated apoptosis and autophagy by licochalcone A in non-small cell lung cancer cells. Scientific Reports, 6, 26241.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Mi, Y., Xiao, C., Du, Q., Wu, W., Qi, G., & Liu, X. (2016). Momordin Ic couples apoptosis with autophagy in human hepatoblastoma cancer cells by reactive oxygen species (ROS)-mediated PI3K/Akt and MAPK signaling pathways. Free Radical Biology and Medicine, 90(2016), 230–242.

    Article  CAS  PubMed  Google Scholar 

  48. Wang, Y., Zhang, Y., Guo, Y., Lu, J., Veeraraghavan, V. P., Mohan, S. K., Wang, C., & Yu, X. (2019). Synthesis of zinc oxide nanoparticles from Marsdenia tenacissima inhibits the cell proliferation and induces apoptosis in laryngeal cancer cells (Hep-2). Journal of Photochemistry and Photobiology B, 201, 111624.

    Article  CAS  Google Scholar 

  49. Akhtar, M. J., Ahamed, M., Kumar, S., Khan, M. M., Ahmad, J., & Alrokayan, S. A. (2012). Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. International Journal of Nanomedicine, 7, 845.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Xia, T., Kovochich, M., Liong, M., Madler, L., Gilbert, B., Shi, H., Yeh, J. I., Zink, J. I., & Nel, A. E. (2008). Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano, 2, 2121–2134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hussein, B. Y., & Mohammed, A. M. (2021). Green synthesis of ZnO nanoparticles in grape extract: Their application as anti-cancer and anti-bacterial. Materials Today: Proceedings, 42(3), 18–26.

    Google Scholar 

Download references

Funding

No fund disclosure.

Author information

Authors and Affiliations

Authors

Contributions

Jun Feng: resources, conceptualization, writing—review and editing. Leilei He: Conceptualization, visualization, writing—review and editing. Jin Qing Hui: methodology, visualization, writing—review and editing. Krishnamoorthy Kavithaa: methodology, visualization, writing—review and editing. Zhengzheng Xu: investigation, conceptualization, supervision, writing—original.

Corresponding author

Correspondence to Zhengzheng Xu.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors agreed to publish this paper in this journal.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., He, L., Hui, J.Q. et al. Synthesis of Bimetallic Palladium/Zinc Oxide Nanocomposites Using Crocus sativus and Its Anticancer Activity via the Induction of Apoptosis in Cervical Cancer. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04877-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04877-8

Keywords

Navigation