Skip to main content
Log in

Response of Datura innoxia Linn. to Gamma Rays and Its Impact on Plant Growth and Productivity

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Dry scarified seeds of Datura innoxia Linn. were gamma-irradiated with 5, 10, 20, 40, 60 and 80 Gy radiation, using a cobalt-60 source at the rate of 0.623 Gy min−1 at room temperature, and germinated on MS-medium in a growth chamber under controlled conditions. Exposure to low dose(s) of radiation (5 Gy) caused stimulatory effect on seed germination. Analysis of 90-day-old seedlings revealed that growth rate of root and shoot, net photosynthetic rate (P N ), stomatal conductance (gs) and the chlorophyll and carotenoid contents increased with 5 Gy radiations. Higher doses proved inhibitory for all the above parameters; the decline observed was positively correlated with increase in intensity of gamma radiation. Intercellular CO2 (Ci), on the other hand, showed an opposite trend, being lower with 5 Gy than in the control, but significantly higher with increased radiation doses. Hyoscyamine, a tropane alkaloid, exhibited only irregular and non-significant variation in its content, with no perceptible change in structure, in the treated material, indicating that gamma-irradiation caused no significant alteration in the quantity or quality of the compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kovacs E, Keresztes A (2002) Effect of gamma and UV-B/C radiation on plant cells. Micron 33(2):199–210

    Article  CAS  PubMed  Google Scholar 

  2. Kim JH, Chung BY, Kim JS, Wi SG (2005) Effects of in planta gamma irradiation on growth, photosynthesis and antioxidative capacity of red pepper (Capsicum annuum L.) plants. J Plant Biol 48(1):47–56

    Article  CAS  Google Scholar 

  3. Jan S, Parween T, Siddiqi TO, Mahmooduzzafar (2012) Effect of gamma radiation on morphological, biochemical and physiological aspects of plants and plant products. Environ Rev 20(1):17–39

    Article  CAS  Google Scholar 

  4. Zaka R, Chenal C, Misset MT (2004) Effects of low doses of short-term gamma irradiation on growth and development through two generations of Pisum sativum. Sci Total Environ 320:121–129

    Article  CAS  PubMed  Google Scholar 

  5. Preuss SB, Britt AB (2003) A DNA-damage-induced cell cycle checkpoint in Arabidopsis. Genetics 164:323–334

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim JH, Lee MH, Moon YR, Kim JS, Wi SG, Kim TH, Chung BY (2009) Characterization of metabolic disturbances closely linked to the delayed senescence of Arabidopsis leaves after gamma-irradiation. Environ Exp Bot 67(2):363–371

    Article  CAS  Google Scholar 

  7. Roberts MF, Wink M (1998) Alkaloids: biochemistry, ecology and medicinal applications. Plenum Press, New York

    Book  Google Scholar 

  8. Marconi PL, Setten LM, Cálcena EN, Alvarez MA, Pitta-Alvarez SI (2008) Changes in growth and tropane alkaloid production in long-term culture of hairy roots of Brugmansia candida. J Integr Biosci 3(1):38–44

    Google Scholar 

  9. Singh N, Ali G, Soh WY, Iqbal M (2000) Growth responses and hyoscyamine content of Datura innoxia under the influence of coal-smoke pollution. J Plant Biol 43(2):69–75

    Article  CAS  Google Scholar 

  10. Hiscox JD, Israelstam GG (1979) A method for extraction of chlorophyll from the leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  11. Duxbury AC, Yentsch S (1956) Plankton pigment nomography. J Air Pollut Contr Ass 16:145–150

    Google Scholar 

  12. MacLachlan S, Zalik S (1963) Plastid structure, chlorophyll concentration and free amino acid composition of a chlorophyll mutant of barley. Can J Bot 41:1053–1062

    Article  CAS  Google Scholar 

  13. Anonymous (1996) Indian pharmacopoeia, vol 1(A–O), Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare (Govt of India), pp 75–384

  14. Akshatha Chandrashekar KR (2013) Effect of gamma irradiation on germination, growth and biochemical parameters of Pterocarpus santalinus, an endangered species of Eastern Ghats. Eur J Exp Biol 3(2):266–270

    CAS  Google Scholar 

  15. Akshatha Chandrashekar KR, Somashekarappa HM, Souframanien J (2013) Effect of gamma irradiation on germination, growth and biochemical parameters of Terminalia arjuna Roxb. Rad Prot Environ 36(1):38–44

    Article  Google Scholar 

  16. Minisi FA, El-Mahrouk ME, El-Din M, Rida F, Nasr MN (2013) Effects of gamma radiation, growth characteristics and morphological variations of Moluccella laevis L. Am-Eurasian J Agric Environ Sci 13(5):696–704

    Google Scholar 

  17. Amjad M, Anjum M (2002) Effect of gamma radiation on onion seed variability, germination potential, seedling growth and morphology. Agric Sci 39(3):202–209

    Google Scholar 

  18. Jan S, Parween T, Siddiqi TO, Mahmooduzzafar (2010) Gamma radiation effects on growth and yield attributes of Psoralea corylifolia L. with reference to enhanced production of psoralen. Plant Growth Reg 64(2):163–171

    Article  Google Scholar 

  19. Marcu D, Cristea V, Daraban L (2013) Dose-dependent effects of gamma irradiation on lettuce (Lactuca sativa var. capitata) seedlings. Int J Rad Biol 89(3):219–223

    Article  CAS  PubMed  Google Scholar 

  20. Benslimani N, Khelifi-Slaoui M, Lassel A, Khiar H, Djerrad A, Mansouri B, Khelifi L (2011) In vitro radiosensitivity study of Datura spp seed for increased alkaloid-producing mutanat lines. Adv Environ Biol 5(2):381–393

    Google Scholar 

  21. Sakr SS, El-Khateeb MA, Taha HS, Esmail SA (2013) Effect of gamma irradiation on in vitro growth, chemical composition and anatomical structure of Dracaena surculosa L. J Appl Sci Res 9(6):3795–3801

    Google Scholar 

  22. Abou-Zeid HM, Abdel-Latif SA (2014) Effects of gamma irradiation on biochemical and antioxidant defense system in wheat (Triticum aestivum L.) seedlings. Int J Adv Res 2(8):287–300

    CAS  Google Scholar 

  23. Nassar AH, Hashim MF, Hassan NS, Abo-Zaid H (2004) Effect of gamma irradiation and phosphorus on growth and oil production of chamomile (Chamomilla recutita L. Rauschert). Int J Agric Biol 6(5):776–780

    Google Scholar 

  24. Abdul M, Asif U, Habib A, Zahir M (2010) Gamma irradiation effects on some growth parameters of Lepidium sativum L. J Agric Biol Sci 5(1):39–42

    Google Scholar 

  25. Moghaddam SS, Jaafar H, Ibrahim R, Rahmat A, Abdul-Aziz M, Philip E (2011) Effects of acute gamma irradiation on physiological traits and flavonoid accumulation of Centella asiatica. Molecules 11:4994–5007

    Article  Google Scholar 

  26. Borzouei A, Kafi M, Khazaei H, Naseriyan B, Majdabad A (2010) Effects of gamma radiation on germination and physiological aspects of wheat (Triticum astivum L.) seedlings. Pak J Bot 42(4):2281–2290

    CAS  Google Scholar 

  27. Kim JS, Kim JK, Lee YK, Back MW, Gim JK (1998) Effects of low dose gamma radiation on the germination and yield components of Chinese cabbage. Korean J Environ Agric 17:274–278

    Google Scholar 

  28. Jones HE, West HM, Chamberlain PM, Parekh NR, Beresford NA, Crout NM (2004) Effects of gamma irradiation on Holcus lantus (Yorkshire fog grass) and associated soil microorganisms. J Environ Radioact 74(1–3):57–71

    Article  CAS  PubMed  Google Scholar 

  29. Jan S, Parween T, Hameed R, Siddiqi TO, Mahmooduzzafar (2013) Effects of pre-sowing gamma irradiation on the photosynthetic pigments, sugar content and carbon gain of Cullen corylifolium (L.) Medik. Chil J Agric Res 73(4):345–350

    Article  Google Scholar 

  30. El-Beltagi H, Mohamed H, Mohammed AHMA, Zaki LM, Mogazy YM (2013) Physiological and biochemical effects of γ-irradiation on cowpea plants (Vigna sinensis) under salt stress. Not Bot Hort Agrobot 41(1):104–114

    CAS  Google Scholar 

  31. Abdel-Hady MS, Okasha EM, Soliman SSA, Talaat M (2008) Effect of gamma radiations and gibberellic acid on germination and alkaloid production in Atropa belladonna. Austral J Basic Appl Sci 2(3):401–405

    CAS  Google Scholar 

  32. Sharifah-NR SA, Hanina MN, Mahir AM, CW-Zanariah CWN, Siti-Sallah O, M-Noor I (2014) Effect of gamma radiation on essential oil production in different plant parts of lemongrass, Cymbopogan citratus. Sci Agric 5(3):110–113

    Google Scholar 

  33. Nakweti RK, Nadiku SL, Sinou V, Luyeye FL, Fundu TM, Hity DM, Kanianga RC, Ndofunsu AD (2014) Effects of gamma irradiation on seeds germination, plantlets growth and in vitro antimalarial activities of Phyllanthus odontadenius Müll Arg. Am J Exp Agric 4(11):1435–1457

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Sumira Jan of the Centre for Research, University of Kashmir, Srinagar, for review of the text and Mr Zakir A Siddiqui of the Botany Department at Jamia Hamdard, New Delhi, for the help of drawings. They also appreciate the comments and suggestions of two unknown referees who reviewed this manuscript for PNAS, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Iqbal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aref, I.M., Khan, P.R., Al Sahli, A.A. et al. Response of Datura innoxia Linn. to Gamma Rays and Its Impact on Plant Growth and Productivity. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 86, 623–629 (2016). https://doi.org/10.1007/s40011-014-0485-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-014-0485-6

Keywords

Navigation