Skip to main content
Log in

Abstract

The eccentricity of a vertex is the maximum distance from it to any other vertex and the average eccentricity avec(G) of a graph G is the mean value of eccentricities of all vertices of G. In this paper we present some lower and upper bounds for the average eccentricity of a connected (molecular) graph in terms of its structural parameters such as number of vertices, diameter, clique number, independence number and the first Zagreb index. Also, we obtain a relation between average eccentricity and first Zagreb index. Moreover, we compare average eccentricity with graph energy, ABC index and \(GA_1\) index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buckley F, Harary F (1990) Distance in Graphs. Addison-Wesley, Redwood

    MATH  Google Scholar 

  2. Dankelmann P, Goddard W, Swart CS (2004) The average eccentricity of a graph and its subgraphs. Util Math 65:41–51

    MathSciNet  MATH  Google Scholar 

  3. Ilić A (2012) On the extremal properties of the average eccentricity. Comput Math Appl 64:2877–2885

    Article  MathSciNet  MATH  Google Scholar 

  4. Tang Y, Zhou B (2012) On average eccentricity. MATCH Commun Math Comput Chem 67:405–423

    MathSciNet  MATH  Google Scholar 

  5. Du Z, Ilic A (2013) On AGX conjectures regarding average eccentricity. MATCH Commun Math Comput Chem 69:597–609

    MathSciNet  MATH  Google Scholar 

  6. Das KC, Mojallal SA (2013) Upper bounds for the energy of graphs. MATCH Commun Math Comput Chem 70(2):657–662

    MathSciNet  MATH  Google Scholar 

  7. Koolen JH, Moulton V (2001) Maximal energy graphs. Adv Appl Math 26:4752

    Article  MathSciNet  MATH  Google Scholar 

  8. Xu K, Feng L (2011) Extremal energies of trees with a given domination number. Linear Algebra Appl 435:2382–2393

    Article  MathSciNet  MATH  Google Scholar 

  9. Vukičević D, Furtula B (2009) Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges. J Math Chem 46:1369–1376

    Article  MathSciNet  MATH  Google Scholar 

  10. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley–VCH, Weinheim

    Book  Google Scholar 

  11. Todeschini R, Consonni V (2009) Molecular descriptors for chemoinformatics, Vol. I, Vol. II. Wiley–VCH, Weinheim

    Book  Google Scholar 

  12. Das KC (2010) On geometrical-arithmetic index of graphs. MATCH Commun Math Comput Chem 64:619–630

    MathSciNet  MATH  Google Scholar 

  13. Das KC, Trinajstić N (2012) Comparison between geometric-arithmetic indices. Croat Chem Acta 85(3):353–357

    Article  Google Scholar 

  14. Yuan Y, Zhou B, Trinajstić N (2010) On geometric-arithmetic index. J Math Chem 47:833–841

    Article  MathSciNet  MATH  Google Scholar 

  15. Furtula B, Graovac A, Vukičević D (2009) Atom–bond connectivity index of trees. Discret Appl Math 157:2828–2835

    Article  MathSciNet  MATH  Google Scholar 

  16. Estrada E, Torres L, Rodríguez L, Gutman I (1998) An atom–bond connectivity index: modelling the enthalpy of formation of alkanes. Indian J Chem 37A:849–855

    Google Scholar 

  17. Estrada E (2008) Atom–bond connectivity and the energetic of branched alkanes. Chem Phys Lett 463:422–425

    Article  ADS  Google Scholar 

  18. Das KC (2010) Atom–bond connectivity index of graphs. Discret Appl Math 158:1181–1188

    Article  MathSciNet  MATH  Google Scholar 

  19. Das KC, Trinajstić N (2010) Comparison between first geometric-arithmetic index and atom-bond connectivity index. Chem Phys Lett 497:149–151

    Article  ADS  Google Scholar 

  20. Das KC (2004) Maximizing the sum of the squares of the degrees of a graph. Discret Math 285:57–66

    Article  MathSciNet  MATH  Google Scholar 

  21. Pólya G, Szegö G (1998) Problems and theorems in analysis I: series, integral calculus, theory of functions. Springer, New York

    Book  MATH  Google Scholar 

  22. Hua H, Zhang S (2012) Relations between Zagreb coindices and some distance-based topological indices. MATCH Commun Math Comput Chem 68:199–208

    MathSciNet  MATH  Google Scholar 

  23. Cvetković D, Doob M, Sachs H (1980) Spectra of graphs-theory and application, III edn. Academic Press, New York

    MATH  Google Scholar 

  24. Schott JR (1997) Matrix analysis for statistics. Wiley, Hoboken

    MATH  Google Scholar 

  25. Zhou B, Gutman I (2007) Nordhaus-Gaddum-type relations for the energy and Laplacian energy of graphs. Bull Acad Serbe Sci Arts (Cl Math Natur) 134:1–11

    MathSciNet  MATH  Google Scholar 

  26. Stein WA et al. (2015) Sage Mathematics Software (Version 6.8). The Sage Development Team, http://www.sagemath.org

Download references

Acknowledgements

The second and fourth authors are partially supported by Research Project Office of Selc¸uk University. The third author is supported by Uludag university research fund, project numbers: F-2016/9, F-2015/23 and F-2015/17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinkar Ch. Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, K.C., Maden, A.D., Cangül, I.N. et al. On Average Eccentricity of Graphs. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 87, 23–30 (2017). https://doi.org/10.1007/s40010-016-0315-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-016-0315-8

Keywords

Mathematics Subject Classification

Navigation