Skip to main content
Log in

Pseudomonas-Mediated Mitigation of Salt Stress and Growth Promotion in Glycine max

  • Full-Length Research Article
  • Published:
Agricultural Research Aims and scope Submit manuscript

Abstract

In the present investigation we emphasized the role of plant growth-promoting bacterium to characterize activities of stress-associated enzymes, proline accumulation, chlorophyll estimation, and Na+/K+ ratio in Glycine max L. Merrill under salt stress. The results showed that inoculation of plants with Pseudomonas koreensis strain AK-1 (MTCC no. 12058) grown under salt treatment induced growth promotion, reduced Na+ levels but increased K+ levels in leaves and roots in comparison with the non-inoculated salt-treated plants. Correspondingly, inoculation of soil with bacterium treated with NaCl plants maintained a lower ratio of [Na+]/[K+] in NaCl-stressed plants. The experiment designed in a completely randomized manner which consisted of four treatments comprising of bacterial inoculation with and without salt treatment including one absolute control (without inoculation and salt treatment). Inoculation of bacterial strains together with salt treatment showed significant increase in activity of stress enzymes along with proline content as compared to salt-treated plants. Application of 200 mM NaCl at 0 day after seeding results inadequate number of lateral roots in uninoculated plants as compared to strain AK-1-inoculated plants. Soybean plants not inoculated with strain AK-1 showed 33 % seed germination in salt-treated plants, and the plant growth was also significantly decreased compared to the strain AK-1-treated plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signalling in plants. Plant Biol 51:167–173

    Article  CAS  Google Scholar 

  2. Allain CC, Poon LC, Chan CSG, Richmond W, Fu PC (1974) Enzymatic determination of total serum cholesterol. Clin Chem 20:470–475

    CAS  PubMed  Google Scholar 

  3. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  4. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  CAS  PubMed  Google Scholar 

  5. Ashraf M, Berge SH, Mahmood OT (2004) Inoculating wheat seedling with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162

    CAS  Google Scholar 

  6. Axelrod B, Cheesbrough TM, Laakso S (1981) Lipoxygenase from soybean. Methods Enzymol 71:441–451

    Article  CAS  Google Scholar 

  7. Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated gravepive plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmas strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  CAS  Google Scholar 

  8. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  9. Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grow in drying soil via both local and systemic hormone signaling. New Phytol 181:413–423

    Article  CAS  PubMed  Google Scholar 

  10. Benhamou N, Kloepper JW, Tuzun S (1998) Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 204:153–168

    Article  CAS  Google Scholar 

  11. Berthomieu P, Coné jé ro G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Véry A-A, Sentenac H, Casse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Beyer WF Jr, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  CAS  PubMed  Google Scholar 

  13. Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Expl Bot 60:3097–3107

    Article  CAS  Google Scholar 

  14. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Broetto F, Marchese JA, Leonardo M, Regina M (2005) Fungal elicitor-mediated changes in polyamine content, phenylalanine ammonia-lyase and peroxidase activities in bean cell culture. Gen Appl Plant Physiol 31:235–246

    Google Scholar 

  16. Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  17. Choudhary DK (2012) Microbial rescue to plant under habitat-imposed abiotic and biotic stresses. Appl Microbiol Biotechnol 96:1137–1155

    Article  CAS  PubMed  Google Scholar 

  18. Croft KPC, Voisey CR, Slusarenkl AJ (1990) Mechanism of hypersensitive cell collapse: correlation of increase lipoxygenase activity with membrane damage in leaves of Phaseolus vulgaris cv. Red Maxican inoculated with avirulent race/cells of Pseudomonas syringae pv. Phaseolicola. Physiol Mol Plant Pathol 36:49–62

    Article  CAS  Google Scholar 

  19. Cullis PM, Jones GD, Symons MC, Lea JS (1987) Electron transfer from protein to DNA in irradiated chromatin. Nature 330:773–774

    Article  CAS  PubMed  Google Scholar 

  20. del Amor F, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol 39:82–90

    Article  Google Scholar 

  21. Dimkpa C, Weinand T, Ash F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  PubMed  Google Scholar 

  22. Dimkpa CO, Merten D, Svatos A, Buchel G, Kothe E (2009) Metal induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162

    Article  CAS  Google Scholar 

  23. Fukuda A, Nakamura A, Tanaka Y (1999) Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim Biophys Acta 1446:149–155

    Article  CAS  PubMed  Google Scholar 

  24. Gao S, Ouyang C, Wang S, Xu Y, Tang L, Chen F (2008) Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings. Plant Soil Environ 54:374–381

    CAS  Google Scholar 

  25. Giri B, Kapoor R, Mukherji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760

    Article  CAS  PubMed  Google Scholar 

  26. Glick B, Patten C, Holguin G, Penrose D (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial Col, London, p 267

    Book  Google Scholar 

  27. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  28. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  29. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signalling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  30. Hammerschmidt R (1999) Induced disease resistance: how do induced plants stop pathogens? Physiol Mol Plant Pathol 55:77–84

    Article  CAS  Google Scholar 

  31. Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  32. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  33. Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  34. Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831

    Article  CAS  Google Scholar 

  35. Horie T, Schroeder JI (2004) Sodium transporters in plants. Diverse genetic and physiological functions. Plant Physiol 136:2457–2462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Jain S, Vaishnav A, Kasotia A, Kumari S, Gaur RK, Choudhary DK. (2013) Bacterium-induced systemic resistance and growth promotion in Glycine max L. Merrill upon challenge inoculation with Fusarium oxysporum. Proc Natl Acad Sci India Sect B Biol Sci. doi:10.1007/s40011-013-0172-z

  37. Jha Y, Subramanian RB, Patel S (2010) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802

    Article  Google Scholar 

  38. Jubani-Marì T, Munné-Bosch S, Alegre L (2010) Redox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascorbate. Plant Physiol Biochem 48:351–358

    Article  Google Scholar 

  39. Kasotia A, Jain S, Vaishnav A, Kumari S, Gaur RK, Choudhary DK (2012) Soybean growth-promotion by Psudomonas sp. strain VS1 under salt stress. Pak J Biol Sci 15:698–701

    Article  PubMed  Google Scholar 

  40. Kavi Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  41. Kohler J, Caravaca F, Roldàn A (2010) An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol Biochem 42:429–434

    Article  CAS  Google Scholar 

  42. Kohler J, Hernandez JA, Caravaca F, Roldàn A (2008) Plant-growth-promoting rhizobacteria and abuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    Article  CAS  Google Scholar 

  43. Kohler J, Hernandez JA, Caravaca F, Roldàn A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65:245–252

    Article  CAS  Google Scholar 

  44. Liang JG, Tao RX, Hao ZN, Wang LP, Zhang X (2013) Induction of resistance in cucumber against seedling damping-off by plant growth-promoting rhizobacteria (PGPR) Bacillus megaterium strain L8. Afr J Biotechnol 10:6920–6927

    Google Scholar 

  45. Liang X, Dron M, Schmid J, Dixon R, Lamb C (1989) Developmental and environmental regulation of a phenylalanine ammonia-lyase-β-glucuronidase gene fusion in transgenic tobacco plants. Proc Natl Acad Sci 86:9284–9288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Lowry OH, Rosebrovgh NJ, Farr AC, Randall RJ (1951) Protein measurements with Folin phenol reagent. Biol Chem 193:265–275

    CAS  Google Scholar 

  47. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  48. Mayak S, Tirosh T, Glick B (1999) Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. Plant Growth Regul 18:49–53

    Article  CAS  Google Scholar 

  49. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  50. Miller G, Susuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  51. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  52. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–18

    Article  CAS  PubMed  Google Scholar 

  53. Munns R, Guo JM, Passioura JB, Cramer GR (2000) Leaf water status controls day-time but not daily rates of leaf expansion in salttreated barley. Aust J Plant Physiol 27:949–957

    Google Scholar 

  54. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  55. Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55:1302–1309

    Article  CAS  PubMed  Google Scholar 

  56. Parida AK, Das AB (2004) Effects of NaCl stress on nitrogen and phosphorous metabolism in a true mangrove Bruguiera parviflora grown under hydroponic culture. J Plant Physiol 161:921–928

    Article  CAS  PubMed  Google Scholar 

  57. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  58. Pascholati SF, Nicholson RL, Butler DL (1986) Phenylalanine ammnia-lyase activity and anthocyanin accumulation in wounded maize mesocotyls. Phytopathology 115:165–172

    Article  CAS  Google Scholar 

  59. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Patterson BD, Payne LA, Chen Y, Graham D (1984) An inhibitor of catalase induced by cold chilling-sensitive plants. Plant Physiol 76:1014–1018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Pe´rez-Alfocea F, Albacete A, Ghanem ME, Dodd IC (2010) Hormonal regulation of source–sink relations to maintain crop productivity under salinity: a case study of root-to-shoot signalling in tomato. Funct Plant Biol 37:592–603

    Article  Google Scholar 

  62. Penrose DM, Glick BR (2001) Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can J Microbiol 47:368–372

    Article  CAS  PubMed  Google Scholar 

  63. Pitzschke AM, Forzani C, Hirt H (2006) Reactive oxygen species signalling in plants. Antioxid Redox Signal 8:1757–1764

    Article  CAS  PubMed  Google Scholar 

  64. Podile AR, Lakshmi VDV (1998) Seed bacterization with Bacillus subtilis increases phenylalanine ammonia-lyase and reduces the incidence of fusarium wilt of pigeonpea. Phytopathology 146:255–259

    Article  CAS  Google Scholar 

  65. Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses, growing out of trouble? Trends Plant Sci 12:98–105

    Article  CAS  PubMed  Google Scholar 

  66. Ray H, Douches DS, Hammerschmidt R (1998) Transformation of potato with cucumber peroxidase: expression and disease response. Physiol Mol Plant Pathol 53:93–103

    Article  CAS  Google Scholar 

  67. Rodrìguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  68. Rodriguez-Rosales MP, Jiang X, Ga´lvez FJ, Aranda MN, Cubero B, Venema K (2008) Overexpression of the tomato K+/H+ antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization. New Phytol 179:366–377

    Article  CAS  PubMed  Google Scholar 

  69. Sandhya V, SkZ Ali, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62:21–30

    Article  CAS  Google Scholar 

  70. Shah S, Li J, Moffatt B, Glick B (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843

    Article  CAS  PubMed  Google Scholar 

  71. Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with salt pretreated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    Article  CAS  PubMed  Google Scholar 

  72. Shi H, Zhu JK (2002) Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and ABA. Plant Mol Biol 50:543–550

    Article  CAS  PubMed  Google Scholar 

  73. Shi HZ, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Spaepen S, Vanderleyden J (2010) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438

    Google Scholar 

  75. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  76. Szabados L, Savouré A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  Google Scholar 

  77. Vardharajula S, Ali SZ, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6:1–14

    Article  CAS  Google Scholar 

  78. Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  79. Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promotion and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 9:127–141

    Article  Google Scholar 

  80. Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. PNAS 94:514–549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620

    Article  CAS  PubMed  Google Scholar 

  82. Yan Z, Reddy MS, Ryu CM, Mc Inroy JA, Wilson M, Kloepper JW (2002) Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92:1329–1333

    Article  CAS  PubMed  Google Scholar 

  83. Yuqi G, Zengyuan T, Daoliang Y, Jie Z, Pei Q (2009) Effects of nitric oxide on salt stress tolerance in Kosteletzkya virginica. Life Sci J 6:67–75

    Google Scholar 

  84. Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Pare´ PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact 21:737–744

    Article  PubMed  Google Scholar 

  85. Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge DBT and SERB Grant no. BT/PR1231/AGR/021/340/2011 and SR/FT/LS-129/2012, respectively, to DKC for financial support. Authors would also acknowledge UGC-RGNF Grant no. F1-17.1/RGNF 2012-2013-SC-RAJ-19482.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Kumar Choudhary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasotia, A., Varma, A. & Choudhary, D.K. Pseudomonas-Mediated Mitigation of Salt Stress and Growth Promotion in Glycine max . Agric Res 4, 31–41 (2015). https://doi.org/10.1007/s40003-014-0139-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40003-014-0139-1

Keywords

Navigation