Skip to main content
Log in

In vitro spermatogenesis using bovine testis tissue culture techniques

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Spermatogenesis is a complex process initiated by spermatogonial stem cells (SSCs) that have the ability to differentiate into mature spermatozoa or to self-renew to maintain the SSC population and long-term fertility. However, a technique for complete spermatogenesis in vitro using cell culture has not yet been developed. In the present study, we developed in vitro spermatogenesis techniques using bovine testis tissue culture. The effects of specific temperatures and different media on maintaining tubule and germ cell competency were investigated. We found that the optimal temperature and media were 37°C and mouse serum-free medium (mSFM), respectively. In addition, the efficacy of various hormones and growth factors on spermatogenesis in bovine testis tissues maintained in vitro was evaluated. We found that the addition of triiodothyronine (T3) and stem cell factor (SCF) induced spermatogenesis of bovine SSCs in vitro. Therefore, tissue fragments were cultured in the presence of T3 and SCF for three months to induce spermatogenesis in vitro. Overall, in vitro spermatogenesis was enhanced 2.4- to 2.7-fold. Our tissue culture technique may serve as a model system that leads to a more comprehensive understanding of the biology of SSCs as well as the factors that regulate male fertility. Furthermore, the results of this study will be integral for the continued refinement of techniques to manipulate bovine SSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huckins C. The spermatogonial stem cell population in adult rats. I. Their morphology, proliferation and maturation. Anat Rec 1971;169:533–557.

    Article  CAS  PubMed  Google Scholar 

  2. Clermont Y. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev 1972;52:198–236.

    CAS  PubMed  Google Scholar 

  3. Bardin CW, Gunsalus GL, Cheng CY. The cell biology of the Sertoli cell. In: Desjardins C, Ewing LL, editors. Cell and molecular biology of the testis. New York: Oxford University Press; 1993. p.189–219.

    Google Scholar 

  4. Russell LD. The Sertoli Cell. Clearwater, FL: Cache River Press; 1993.

    Google Scholar 

  5. Griswold MD. The central role of Sertoli cells in spermatogenesis. Semin Cell Dev Biol 1998;9:411–416.

    Article  CAS  PubMed  Google Scholar 

  6. de Rooij DG. Stem cells in the testis. Int J Exp Pathol 1998;79:67–80.

    Article  PubMed  Google Scholar 

  7. de Rooij DG. The spermatogonial stem cell niche. Microsc Res Tech 2009;72:580–585.

    Article  PubMed  Google Scholar 

  8. Russell LD, Ettlin RA, Hikim AP, Clegg ED. Mammalian spermatogenesis. In: Russell LD, editor. Histological and histopathological evaluation of the testis. Clearwater, FL: Lonnie Dee Russell; 1990. p.1–40.

    Google Scholar 

  9. Sato T, Katagiri K, Yokonishi T, Kubota Y, Inoue K, Ogonuki N, et al. In vitro production of fertile sperm from murine spermatogonial stem cell lines. Nat Commun 2011;2:472.

    Article  PubMed  Google Scholar 

  10. Kubota H, Wu X, Goodyear SM, Avarbock MR, Brinster RL. Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties. FASEB J 2011;25:2604–2614.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kanatsu-Shinohara M, Miki H, Inoue K, Ogonuki N, Toyokuni S, Ogura A, et al. Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biol Reprod 2005;72:985–991.

    Article  CAS  PubMed  Google Scholar 

  12. Ryu BY, Kubota H, Avarbock MR, Brinster RL. Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proc Natl Acad Sci U S A 2005;102:14302–14307.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hamra FK, Chapman KM, Wu Z, Garbers DL. Isolating highly pure rat spermatogonial stem cells in culture. Methods Mol Biol 2008;450:163–179.

    Article  CAS  PubMed  Google Scholar 

  14. Sadri-Ardekani H, Mizrak SC, van Daalen SK, Korver CM, Roepers-Gajadien HL, Koruji M, et al. Propagation of human spermatogonial stem cells in vitro. JAMA 2009;302:2127–2134.

    Article  CAS  PubMed  Google Scholar 

  15. He Z, Kokkinaki M, Jiang J, Dobrinski I, Dym M. Isolation, characterization, and culture of human spermatogonia. Biol Reprod 2010;82:363–372.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Trowell OA. The culture of mature organs in a synthetic medium. Exp Cell Res 1959;16:118–147.

    Article  CAS  PubMed  Google Scholar 

  17. Steinberger A, Steinberger E. In vitro growth and development of mammalian testes. In: Johnson AD, Gomes WR, VanDemark NL, editors. The Testis. New York: Academic Press; 1970. p.363–391.

    Google Scholar 

  18. Gohbara A, Katagiri K, Sato T, Kubota Y, Kagechika H, Araki Y, et al. In vitro murine spermatogenesis in an organ culture system. Biol Reprod 2010;83:261–267.

    Article  CAS  PubMed  Google Scholar 

  19. Sato T, Katagiri K, Gohbara A, Inoue K, Ogonuki N, Ogura A, et al. In vitro production of functional sperm in cultured neonatal mouse testes. Nature 2011;471:504–507.

    Article  CAS  PubMed  Google Scholar 

  20. Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 2003;69:612–616.

    Article  CAS  PubMed  Google Scholar 

  21. Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 2004;101:16489–16494.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Borjigin U, Davey R, Hutton K, Herrid M. Expression of promyelocytic leukaemia zinc-finger in ovine testis and its application in evaluating the enrichment efficiency of differential plating. Reprod Fertil Dev 2010;22: 733–742.

    Article  CAS  PubMed  Google Scholar 

  23. Ertl C, Wrobel KH. Distribution of sugar residues in the bovine testis during postnatal ontogenesis demonstrated with lectin-horseradish peroxidase conjugates. Histochemistry 1992;97:161–171.

    Article  CAS  PubMed  Google Scholar 

  24. Wrobel KH, Bickel D, Kujat R, Schimmel M. Configuration and distribution of bovine spermatogonia. Cell Tissue Res 1995;279:277–289.

    Article  CAS  PubMed  Google Scholar 

  25. Wrobel KH. Prespermatogenesis and spermatogoniogenesis in the bovine testis. Anat Embryol (Berl) 2000;202:209–222.

    Article  CAS  Google Scholar 

  26. Kubota H, Avarbock MR, Brinster RL. Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol Reprod 2004;71:722–731.

    Article  CAS  PubMed  Google Scholar 

  27. Barnes D, Sato G. Serum-free cell culture: a unifying approach. Cell 1980; 22:649–655.

    Article  CAS  PubMed  Google Scholar 

  28. Goldsborough MD, Tilkins ML, Price OJ, Lobo-Alfonso J, Morrison JR, Stevens ME. Serum-free culture of murine embryonic stem (ES) cells. Focus 1998;20:8–12.

    Google Scholar 

  29. Tadokoro Y, Yomogida K, Ohta H, Tohda A, Nishimune Y. Homeostatic regulation of germinal stem cell proliferation by the GDNF/FSH pathway. Mech Dev 2002;113:29–39.

    Article  CAS  PubMed  Google Scholar 

  30. Naughton CK, Jain S, Strickland AM, Gupta A, Milbrandt J. Glial cellline derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol Reprod 2006;74:314–321.

    Article  CAS  PubMed  Google Scholar 

  31. Han NR, Park YH, Yun JI, Park HJ, Park MH, Kim MS, et al. Determination of feeder cell-based cellular niches supporting the colonization and maintenance of spermatogonial stem cells from prepubertal domestic cat testes. Reprod Domest Anim 2014;49:705–710.

    Article  CAS  PubMed  Google Scholar 

  32. Meng X, Lindahl M, Hyvönen ME, Parvinen M, de Rooij DG, Hess MW, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 2000;287:1489–1493.

    Article  CAS  PubMed  Google Scholar 

  33. Nagano M, Ryu BY, Brinster CJ, Avarbock MR, Brinster RL. Maintenance of mouse male germ line stem cells in vitro. Biol Reprod 2003;68: 2207–2214.

    Article  CAS  PubMed  Google Scholar 

  34. Park TS, Han JY. Derivation and characterization of pluripotent embryonic germ cells in chicken. Mol Reprod Dev 2000;56:475–482.

    Article  CAS  PubMed  Google Scholar 

  35. Haneji T, Koide SS, Nishimune Y, Oota Y. Dibutyryl adenosine cyclic monophosphate regulates differentiation of type A spermatogonia with vitamin A in adult mouse cryptorchid testis in vitro. Endocrinology 1986;119:2490–2496.

    Article  CAS  PubMed  Google Scholar 

  36. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 2006;440:1199–1203.

    Article  CAS  PubMed  Google Scholar 

  37. Herrid M, Vignarajan S, Davey R, Dobrinski I, Hill JR. Successful transplantation of bovine testicular cells to heterologous recipients. Reproduction 2006;132:617–624.

    Article  CAS  PubMed  Google Scholar 

  38. Kim KJ, Cho CM, Kim BG, Lee YA, Kim BJ, Kim YH, et al. Lentiviral modification of enriched populations of bovine male gonocytes. J Anim Sci 2014;92:106–118.

    Article  CAS  PubMed  Google Scholar 

  39. Kurohmaru M, Kanai Y, Hayashi Y. Lectin-binding patterns in the spermatogenic cells of the shiba goat testis. J Vet Med Sci 1991;53:893–897.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buom-Yong Ryu.

Additional information

These authors equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, KJ., Kim, BG., Kim, YH. et al. In vitro spermatogenesis using bovine testis tissue culture techniques. Tissue Eng Regen Med 12, 314–323 (2015). https://doi.org/10.1007/s13770-015-0045-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-015-0045-z

Keywords

Navigation