Skip to main content
Log in

Autologous bone-marrow mesenchymal cell induced chondrogenesis: Single-stage arthroscopic cartilage repair

  • Original Article
  • Regenerative Medicine & Clinical Application
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

An Erratum to this article was published on 27 July 2017

This article has been updated

Abstract

We describe a single stage arthroscopic procedure for the treatment of articular cartilage defects in the knee. The novel procedure involves microfracture and application of bone marrow aspirate concentrate cells (BMAC) with hyaluronic acid and fibrin gel. The aim of the study was to evaluate the clinical and radiological outcomes at 2 years. A prospective study of 30 patients with symptomatic ICRS grade III/IV chondral defects, ranging from 2–9 cm2, who were assessed clinically and radiologically. The surgical procedure involved debridement of the lesion, microfracture and application of concentrated BMAC with HA and fibrin gel under CO2 insufflation. Patients underwent morphological MRI, quantitative T2*-mapping and d-GEMRIC scan. Clinical assessment used the Lysholm, IKDC and KOOS scores. Radiological assessment used the MOCART score. At 2 year follow-up, Lysholm score was 80.1, as compared to 50.8 pre-operatively (p < 0.05). KOOS (symptomatic) was 92.1, as compared to 65.7 pre-operatively. IKDC (subjective) was 83, up from 39 preoperatively. The mean T2* relaxation-times for the repair tissue and native cartilage were 29.1 and 29.9 respectively. Average MOCART score for all lesions was 72. Our technique shows encouraging clinical results at 2 year follow-up. Clinical outcome scores show significant benefit. The morphological MRI shows good cartilage defect filling and the biochemical MRI (T2*-mapping) suggests hyaline like repair tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 27 July 2017

    An erratum to this article has been published.

References

  1. MJ Elders, The increasing impact of arthritis on public health, J Rheumatol Suppl, 60, 6 (2000).

    CAS  PubMed  Google Scholar 

  2. W Hunter, On the structure and diseases of articulating cartilage, Phil Trans Roy Soc, 42B, 514 (1743).

    Google Scholar 

  3. KC Hirshorn, T Cates, S Gillogly, Magnetic resonance imagingdocumented chondral injuries about the knee in college football players: 3-year National Football League Combine data, Arthroscopy, 26, 1237 (2010).

    Article  PubMed  Google Scholar 

  4. JL Carey. Fibrocartilage following microfracture is not as robust as native articular cartilage: commentary on an article by Aaron J. Krych, MD, et al., “Activity levels are higher after osteochondral autograft transfer mosaicplasty than after microfracture for articular cartilage defects of the knee. A retrospective comparative study”, J Bone Joint Surg Am, 94, e80 (2012).

    Article  PubMed  Google Scholar 

  5. CA Robb, C El-Sayed, GS Matharu, et al., Survival of autologous osteochondral grafts in the knee and factors influencing outcome, ActaOrthop Belg, 78, 643 (2012).

    Google Scholar 

  6. OF Gardner, CW Archer, M Alini, et al., Chondrogenesis of mesenchymal stem cells for cartilage tissue engineering, Histol Histopathol, 28, 23 (2013).

    CAS  PubMed  Google Scholar 

  7. I Ipach, R Schäfer, J Lahrmann, T Kluba, Stiffness after knee arthrotomy: evaluation of prevalence and results after manipulation under anaesthesia, Orthop Traumatol Surg Res, 97, 292 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. JH Hui, F Chen, A Thambyah, et al., Treatment of chondral lesions in advanced osteochondritisdissecans: a comparative study of the efficacy of chondrocytes, mesenchymal stem cells, periosteal graft, and mosaicplasty (osteochondral autograft) in animal models, J PediatrOrthop, 24, 427 (2004).

    Google Scholar 

  9. H Chiang, CH Hsieh, YH Lin, et al., Differences between chondrocytes and bone marrow-derived chondrogenic cells, Tissue Eng Part A, 17, 2919 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. T Efe, C Theisen, S Fuchs-Winkelmann, et al., Cell-free collagen type I matrix for repair of cartilage defects-clinical and magnetic resonance imaging results, Knee Surg Sports Traumatol Arthrosc, 20, 1915 (2012).

    Article  PubMed  Google Scholar 

  11. DD Allison, KJ Grande-Allen. Hyaluronan: a powerful tissue engineering tool, Tissue Engineering, 12, 2131 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. JA Burdick, C Chung, X Jia, et al., Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks, Biomacromolecules, 6, 386 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A Sage, AA Chang, BL Schumacher, et al., Cartilage outgrowth in fibrin scaffolds. Am J Rhinol Allergy. 23, 486 (2009).

    Article  PubMed  Google Scholar 

  14. J Lysholm, J Gillquist. Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med. 10, 150 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. EM Roos, HP Roos, LS Lohmander, et al., Knee Injury and Osteoarthritis Outcome Score (KOOS)—development of a selfadministered outcome measure. J Orthop Sports Phys Ther, 28, 88 (1998)

    Article  CAS  PubMed  Google Scholar 

  16. AF Anderson, JJ Irrgang, MS Kocher, et al., The International Knee Documentation Committee Subjective Knee Evaluation Form: normative data. Am J Sports Med. 34, 128 (2006)

    Article  PubMed  Google Scholar 

  17. FW Roemer, MD Crema, S Trattnig, et al., Advances in imaging of osteoarthritis and cartilage, Radiology, 260, 332 (2011).

    Article  PubMed  Google Scholar 

  18. A Gobbi, G Karnatzikos, C Scotti, et al., One-Step Cartilage Repair with Bone Marrow Aspirate Concentrated Cells and Collagen Matrix in Full-Thickness Knee Cartilage Lesions: Results at 2-Year Follow-up, Cartilage, 2, 286 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. S Giannini, R Buda, F Vannini, et al., One-step bone marrowderived cell transplantation in talar osteochondral lesions, Clin Orthop Relat Re, 467, 3307 (2009).

    Article  Google Scholar 

  20. M Ochi, N Adachi, H Nobuto, et al., Articular cartilage repair using tissue engineering technique: novel approach with minimally invasive procedure, Artif Organs, 28, 28 (2004).

    Article  PubMed  Google Scholar 

  21. MM Wilke, DV Nydam, AJ Nixon, Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model, J Orthop Res, 25, 913 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. JD Jang, YS Moon, YS Kim, et al., Novel Repair Technique for Articular Cartilage Defect using a Fibrin and Hyaluronic acid Mixture, Tissue Eng Regen Med, 10, 1 (2013).

    Article  CAS  Google Scholar 

  23. M Galotto, G Berisso, L Delfino, et al., Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients, Exp Hematol, 27, 1460 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. V Cantaluppi, L Biancone, A Quercia, et al., Rationale of mesenchymal stem cell therapy in kidney injury, Am J Kidney Dis, 61, 300 (2013).

    Article  PubMed  Google Scholar 

  25. LA Fortier, CE Balkman, LJ Sandell, et al., Insulin-like growth factor-I gene expression patterns during spontaneous repair of acute articular cartilage injury, J Orthop Res, 19, 720 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. LA Fortier, HO Mohammed, G Lust, et al., Insulin-like growth factor-I enhances cell-based repair of articular cartilage, J Bone Joint Surg Br, 84, 276 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. LA Fortier, H Potter, E Rickey et al., Concentrated bone marrow aspirate improves full-thickness cartilage repair, J Bone Joint Surg Am, 92, 1927 (2010).

    Article  PubMed  Google Scholar 

  28. PG Robey, P Bianco. The use of adult stem cells in rebuilding the human face, J Am Dent Assoc, 137, 961 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. D Cook, P Genever. Regulation of mesenchymal stem cell differentiation, Adv Exp Med Biol, 786, 213 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. H Kasagi, T Kuhara, H Okada, et al., Mesenchymal stem cell transplantation to the mouse cochlea as a treatment for childhood sensorineural hearing loss, Int J Pediatr Otorhinolaryngol, 77, 936 (2013).

    Article  PubMed  Google Scholar 

  31. Y Zhang, X Liang, Q Lian, et al., Perspective and challenges of mesenchymal stem cells for cardiovascular regeneration, Expert Rev Cardiovasc Ther, 11, 505 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. AB Shukrimi, MH Afizah, JF Schmitt, et al., Mesenchymal stem cell therapy for njured growth plate, Front Biosci (Schol Ed), 5, 774 (2013).

    Google Scholar 

  33. L Wang, RR Rao, JP Stegemann, Delivery of Mesenchymal Stem Cells in Chitosan/Collagen Microbeads for Orthopedic Tissue Repair, Cells Tissues Organs, 3, 333 (2013).

    Article  Google Scholar 

  34. AI Caplan, Why are MSCs therapeutic? New data: new insight, J Pathol, 217, 318 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. AI Caplan, Mesenchymal stem cells: cell-based reconstructivetherapy in orthopedics, Tissue Eng, 11, 1198 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. AI Caplan, JE Dennis. Mesenchymal stem cells as trophic mediators, J Cell Biochem, 98, 1076 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. E Jones, D McGonagle, Human bone marrow mesenchymal stem cells in vivo. Rheumatology (Oxford), 47, 26 (2008).

    Article  Google Scholar 

  38. L Wang, Y Li, X Chen, J Chen, et al., MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture, Hematology, 7, 113 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. AI Caplan, Mesenchymal stem cells: the past, the present, the future, Cartilage, 1, 6 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. SW Kang, LP Bada, CS Kang, et al., Articular cartilage regeneration with microfracture and hyaluronic acid, Biotechnology Letter, 30, 435 (2008).

    Article  CAS  Google Scholar 

  41. KY Saw, P Hussin, SC Loke, et al., Articular cartilage regeneration with autologous marrow aspirate and hyaluronic acid: an experimental study in a goat model, Arthroscopy, 25, 1391 (2009).

    Article  PubMed  Google Scholar 

  42. M Mawatari, T Higo, Y Tsutsumi, et al., Effectiveness of autologous fibrin tissue adhesive in reducing postoperative blood loss during total hip rthroplasty: a prospective randomised study of 100 cases. J Orthop Surg, 14, 117 (2006).

    Article  CAS  Google Scholar 

  43. J Keller, TT Andreassen, F Joyce, et al., Fixation of osteochondral fractures, fibrin sealant 3tested in dogs, Acta Orthop Scand, 56, 323 (1985).

    Article  CAS  PubMed  Google Scholar 

  44. L Peterson, M Brittberg, I Kiviranta, et al., Autologous chondrocyte transplantation: biomechanics and long-term durability, Am J Sports Med, 30, 2 (2002).

    Article  PubMed  Google Scholar 

  45. H Davis, BY Binder, P Schaecher, et al., Enhancing Osteoconductivity of Fibrin Gels with Apatite-Coated Polymer Microspheres, Tissue Eng Part A, 19, 1773 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. JS Comer, SA Kincaid, AN Baird, et al., Immunolocalization of stromelysin, tumor necrosis factor (TNF) alpha, and TNF receptors in atrophied canine articular cartilage treated with hyaluronic acid and transforming growth factor beta, Am J Vet Res, 57, 1488 (1996).

    CAS  PubMed  Google Scholar 

  47. G Lisignoli, S Cristino, A Piacentini, et al., Hyaluronan-based polymer scaffold modulates the expression of inflammatory and degradative factors in mesenchymal stem cells: Involvement of Cd44 and Cd54, J Cell Physiol, 207, 364 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. F Hirai, T Beppu, T Nishimura, et al., Carbon dioxide insufflation compared with air insufflation in double-balloon enteroscopy: a prospective, randomized, double-blind trial, Gastrointest Endosc, 73, 743 (2011).

    Article  PubMed  Google Scholar 

  49. SL Corson, JJ Hoffman, J Jackowski, et al., Cardiopulmonary effects of direct venous CO2 insufflation in ewes. A model for CO2 hysteroscopy, J Reprod Med, 33, 440 (1988).

    CAS  PubMed  Google Scholar 

  50. B Mandelbaum, JE Browne, F Fu, et al., Treatment outcomes of autologous chondrocyte implantation for full-thickness articular cartilage defects of the trochlea, Am J Sports Med, 35, 915 (2007).

    Article  PubMed  Google Scholar 

  51. M Brittberg, L Peterson, E Sjögren-Jansson, et al., Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments, J Bone Joint Surg Am, 109 (2003).

    Google Scholar 

  52. A Gobbi, E Kon, M Berruto, et al., Patellofemoral fullthickness chondral defects treated with second-generation autologous chondrocyte implantation: results at 5 years’ followup, Am J Sports Med, 37, 1083 (2009).

    Article  PubMed  Google Scholar 

  53. M Marcacci, E Kon, S Zaffagnini, et al., Arthroscopic second generation autologous chondrocyte implantation, Knee Surg Sports Traumatol Arthrosc, 15, 610 (2007).

    Article  PubMed  Google Scholar 

  54. K Mithoefer, M Acuna, Clinical Outcomes Assessment for Articular Cartilage Restoration, J Knee Surg, 26, 31 (2013).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok Jung Kim.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s13770-017-0073-y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shetty, A.A., Kim, S.J., Shetty, V. et al. Autologous bone-marrow mesenchymal cell induced chondrogenesis: Single-stage arthroscopic cartilage repair. Tissue Eng Regen Med 11, 247–253 (2014). https://doi.org/10.1007/s13770-014-0061-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-014-0061-4

Key words

Navigation