Skip to main content
Log in

Cell-free collagen type I matrix for repair of cartilage defects—clinical and magnetic resonance imaging results

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Several well-described techniques are available for the treatment of chondral and osteochondral defects. The aim of the study was to assess the efficacy of a single-stage procedure incorporating a new cell-free collagen type I gel for the treatment of small chondral and osteochondral defects in the knee evaluated at 2-year follow-up.

Methods

Fifteen patients were treated with a cell-free collagen type I gel matrix of 11 mm diameter. The grafts were implanted in the debrided cartilage defect and fixed by press-fit only. The clinical outcome was assessed preoperatively and at 6 weeks, and 6, 12 and 24 months after surgery using the International Knee Documentation Committee (IKDC) score, Tegner activity scale and visual analogue scale (VAS). Graft attachment rate was assessed 6 weeks postoperatively using magnetic resonance imaging (MRI). Cartilage regeneration was evaluated using the Magnetic Observation of Cartilage Repair Tissue (MOCART) score at 6, 12 and 24 months after implantation. Clinical results were correlated with MRI findings.

Results

Six male and nine female patients were included in this study, with a mean age of 26 (range: 19–40). No complications were reported. The mean VAS values after 6 weeks and the mean IKDC patient values after 6 months were significantly improved from the preoperative values (P = 0.005 and P = 0.009, respectively). This improvement remained up to the latest follow-up. There were no significant differences between the median preoperative and postoperative Tegner values (n.s.). Significant improvement of the mean MOCART score was observed after 12 months and remained by 24 months (P < 0.001). MR images showed that in 14 of the 15 patients, the graft was completely attached by 6 weeks postoperatively. At 24 months after implantation, MRI demonstrated complete filling in all cases with a mainly smooth surface, complete integration of the border zone, homogenous structure of the repaired tissue and nearly normal signal intensity. No correlation between any variables of the MOCART score and the clinical scores was observed.

Conclusions

The present study reveals that the new method produces both good clinical and magnetic resonance imaging results. Use of press-fit only implanted grafts of a smaller diameter leads to a high attachment rate at 24-month follow-up.

Level of evidence

IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alparslan L, Minas T, Winalski CS (2001) Magnetic resonance imaging of autologous chondrocyte implantation. Semin Ultrasound CT MR 22:341–351

    Article  PubMed  CAS  Google Scholar 

  2. Andereya S, Maus U, Gavenis K, Muller-Rath R, Miltner O, Mumme T, Schneider U (2006) First clinical experiences with a novel 3D-collagen gel (CaReS) for the treatment of focal cartilage defects in the knee. Z Orthop Ihre Grenzgeb 144:272–280

    Article  PubMed  CAS  Google Scholar 

  3. Bae DK, Yoon KH, Song SJ (2006) Cartilage healing after microfracture in osteoarthritic knees. Arthroscopy 22:367–374

    Article  PubMed  Google Scholar 

  4. Basad E, Ishaque B, Bachmann G, Sturz H, Steinmeyer J (2010) Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surg Sports Traumatol Arthrosc 18:519–527

    Article  PubMed  Google Scholar 

  5. Benthien JP, Behrens P (2011) The treatment of chondral and osteochondral defects of the knee with autologous matrix-induced chondrogenesis (AMIC): method description and recent developments. Knee Surg Sports Traumatol Arthrosc 19:1316–1319

    Article  PubMed  Google Scholar 

  6. Bentley G, Biant LC, Carrington RW, Akmal M, Goldberg A, Williams AM, Skinner JA, Pringle J (2003) A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br 85:223–230

    Article  PubMed  CAS  Google Scholar 

  7. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895

    Article  PubMed  CAS  Google Scholar 

  8. Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A(Suppl 2):58–69

    PubMed  Google Scholar 

  9. Cherubino P, Grassi FA, Bulgheroni P, Ronga M (2003) Autologous chondrocyte implantation using a bilayer collagen membrane: a preliminary report. J Orthop Surg (Hong Kong) 11:10–15

    CAS  Google Scholar 

  10. Efe T, Fuglein A, Heyse TJ, Stein T, Timmesfeld N, Fuchs-Winkelmann S, Schmitt J, Paletta JR, Schofer MD (2011) Fibrin glue does not improve the fixation of press-fitted cell-free collagen gel plugs in an ex vivo cartilage repair model. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-011-1571-4

  11. Flandry F, Hunt JP, Terry GC, Hughston JC (1991) Analysis of subjective knee complaints using visual analog scales. Am J Sports Med 19:112–118

    Article  PubMed  CAS  Google Scholar 

  12. Gavenis K, Schmidt-Rohlfing B, Andereya S, Mumme T, Schneider U, Mueller-Rath R (2010) A cell-free collagen type I device for the treatment of focal cartilage defects. Artif Organs 34:79–83

    Article  PubMed  CAS  Google Scholar 

  13. Gobbi A, Nunag P, Malinowski K (2005) Treatment of full thickness chondral lesions of the knee with microfracture in a group of athletes. Knee Surg Sports Traumatol Arthrosc 13:213–221

    Article  PubMed  Google Scholar 

  14. Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A (2006) A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. Knee 13:203–210

    Article  PubMed  CAS  Google Scholar 

  15. Hangody L, Vasarhelyi G, Hangody LR, Sukosd Z, Tibay G, Bartha L, Bodo G (2008) Autologous osteochondral grafting—technique and long-term results. Injury 39(Suppl 1):332–339

    Google Scholar 

  16. Hoemann CD, Hurtig M, Rossomacha E, Sun J, Chevrier A, Shive MS, Buschmann MD (2005) Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Joint Surg Am 87:2671–2686

    Article  PubMed  Google Scholar 

  17. Irrgang JJ, Anderson AF, Boland AL, Harner CD, Kurosaka M, Neyret P, Richmond JC, Shelborne KD (2001) Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med 29:600–613

    PubMed  CAS  Google Scholar 

  18. Iwasa J, Engebretsen L, Shima Y, Ochi M (2009) Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc 17:561–577

    Article  PubMed  Google Scholar 

  19. Kreuz PC, Steinwachs M, Erggelet C, Lahm A, Krause S, Ossendorf C, Meier D, Ghanem N, Uhl M (2007) Importance of sports in cartilage regeneration after autologous chondrocyte implantation: a prospective study with a 3-year follow-up. Am J Sports Med 35:1261–1268

    Article  PubMed  Google Scholar 

  20. Kreuz PC, Steinwachs MR, Erggelet C, Krause SJ, Konrad G, Uhl M, Sudkamp N (2006) Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthr Cartil 14:1119–1125

    Article  PubMed  CAS  Google Scholar 

  21. Marlovits S, Mamisch TC, Vekszler G, Resinger C, Trattnig S (2008) Magnetic resonance imaging for diagnosis and assessment of cartilage defect repairs. Injury 39(Suppl 1):13–25

    Article  Google Scholar 

  22. Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57:16–23

    Article  PubMed  Google Scholar 

  23. Marlovits S, Striessnig G, Kutscha-Lissberg F, Resinger C, Aldrian SM, Vecsei V, Trattnig S (2005) Early postoperative adherence of matrix-induced autologous chondrocyte implantation for the treatment of full-thickness cartilage defects of the femoral condyle. Knee Surg Sports Traumatol Arthrosc 13:451–457

    Article  PubMed  Google Scholar 

  24. Mithoefer K, Williams RJ 3rd, Warren RF, Potter HG, Spock CR, Jones EC, Wickiewicz TL, Marx RG (2005) The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am 87:1911–1920

    Article  PubMed  Google Scholar 

  25. Morales TI (2007) Chondrocyte moves: clever strategies? Osteoarthr Cartil 15:861–871

    Article  PubMed  CAS  Google Scholar 

  26. Nehrer S, Domayer S, Dorotka R, Schatz K, Bindreiter U, Kotz R (2006) Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair. Eur J Radiol 57:3–8

    Article  PubMed  CAS  Google Scholar 

  27. Niemeyer P, Lenz P, Kreuz PC, Salzmann GM, Sudkamp NP, Schmal H, Steinwachs M (2010) Chondrocyte-seeded type I/III collagen membrane for autologous chondrocyte transplantation: prospective 2-year results in patients with cartilage defects of the knee joint. Arthroscopy 26:1074–1082

    Article  PubMed  Google Scholar 

  28. Niemeyer P, Pestka JM, Kreuz PC, Erggelet C, Schmal H, Suedkamp NP, Steinwachs M (2008) Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint. Am J Sports Med 36:2091–2099

    Article  PubMed  Google Scholar 

  29. Pavesio A, Abatangelo G, Borrione A, Brocchetta D, Hollander AP, Kon E, Torasso F, Zanasi S, Marcacci M (2003) Hyaluronan-based scaffolds (Hyalograft C) in the treatment of knee cartilage defects: preliminary clinical findings. Novartis Found Symp 249:203–217

    Article  PubMed  Google Scholar 

  30. Peterson L, Brittberg M, Kiviranta I, Akerlund EL, Lindahl A (2002) Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am J Sports Med 30:2–12

    PubMed  Google Scholar 

  31. Schagemann JC, Erggelet C, Chung HW, Lahm A, Kurz H, Mrosek EH (2009) Cell-laden and cell-free biopolymer hydrogel for the treatment of osteochondral defects in a sheep model. Tissue Eng Part A 15:75–82

    Article  PubMed  CAS  Google Scholar 

  32. Schneider U, Schmidt-Rohlfing B, Gavenis K, Maus U, Mueller-Rath R, Andereya S (2011) A comparative study of 3 different cartilage repair techniques. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-011-1460-x

  33. Schottle PB, Fucentese SF, Romero J (2005) Clinical and radiological outcome of medial patellofemoral ligament reconstruction with a semitendinosus autograft for patella instability. Knee Surg Sports Traumatol Arthrosc 13:516–521

    Article  PubMed  CAS  Google Scholar 

  34. Sittinger M, Perka C, Schultz O, Haupl T, Burmester GR (1999) Joint cartilage regeneration by tissue engineering. Z Rheumatol 58:130–135

    Article  PubMed  CAS  Google Scholar 

  35. Solheim E, Hegna J, Oyen J, Austgulen OK, Harlem T, Strand T (2010) Osteochondral autografting (mosaicplasty) in articular cartilage defects in the knee: results at 5 to 9 years. Knee 17:84–87

    Article  PubMed  Google Scholar 

  36. Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG (2003) Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 19:477–484

    Article  PubMed  Google Scholar 

  37. Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 198:43–49

    PubMed  Google Scholar 

  38. Tins BJ, McCall IW, Takahashi T, Cassar-Pullicino V, Roberts S, Ashton B, Richardson J (2005) Autologous chondrocyte implantation in knee joint: MR imaging and histologic features at 1-year follow-up. Radiology 234:501–508

    Article  PubMed  Google Scholar 

  39. Trattnig S, Ba-Ssalamah A, Pinker K, Plank C, Vecsei V, Marlovits S (2005) Matrix-based autologous chondrocyte implantation for cartilage repair: noninvasive monitoring by high-resolution magnetic resonance imaging. Magn Reson Imaging 23:779–787

    Article  PubMed  CAS  Google Scholar 

  40. Uchio Y, Ochi M, Matsusaki M, Kurioka H, Katsube K (2000) Human chondrocyte proliferation and matrix synthesis cultured in Atelocollagen gel. J Biomed Mater Res 50:138–143

    Article  PubMed  CAS  Google Scholar 

  41. Welsch GH, Trattnig S, Domayer S, Marlovits S, White LM, Mamisch TC (2009) Multimodal approach in the use of clinical scoring, morphological MRI and biochemical T2-mapping and diffusion-weighted imaging in their ability to assess differences between cartilage repair tissue after microfracture therapy and matrix-associated autologous chondrocyte transplantation: a pilot study. Osteoarthr Cartil 17:1219–1227

    Article  PubMed  CAS  Google Scholar 

  42. Zheng MH, Willers C, Kirilak L, Yates P, Xu J, Wood D, Shimmin A (2007) Matrix-induced autologous chondrocyte implantation (MACI): biological and histological assessment. Tissue Eng 13:737–746

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

TE and MDS are consultants to Smith & Nephew, Arthroscopy, Germany. The Magnetic Resonance Imaging was supported by a research fund of Arthro Kinetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turgay Efe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efe, T., Theisen, C., Fuchs-Winkelmann, S. et al. Cell-free collagen type I matrix for repair of cartilage defects—clinical and magnetic resonance imaging results. Knee Surg Sports Traumatol Arthrosc 20, 1915–1922 (2012). https://doi.org/10.1007/s00167-011-1777-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-011-1777-5

Keywords

Navigation