Skip to main content
Log in

Three dimensional reconstruction of bone-cartilage transitional structures based on semi-automatic registration and automatic segmentation of serial sections

  • Original Article
  • Tissue Engineering
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

A well-defined three-dimensional (3-D) reconstruction of bone-cartilage transitional structures is crucial for the osteochondral restoration. This paper presents an accurate, computationally efficient and semi-automated algorithm for the alignment and segmentation of two-dimensional (2-D) serial to construct the 3-D model of bonecartilage transitional structures. Entire system includes the following five components: (1) image harvest, (2) image registration, (3) image segmentation, (4) 3-D reconstruction and visualization, and (5) evaluation. A computer program was developed in the environment of Matlab for the semi-automatic alignment and automatic segmentation of serial sections. Semi-automatic alignment algorithm based on the position’s cross-correlation of the anatomical characteristic feature points of two sequential sections. A method combining an automatic segmentation and an image threshold processing was applied to capture the regions and structures of interest. SEM micrograph and 3-D model reconstructed directly in digital microscope were used to evaluate the reliability and accuracy of this strategy. The morphology of 3-D model constructed by serial sections is consistent with the results of SEM micrograph and 3-D model of digital microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H Madry, CN van Dijk, M Mueller-Gerbl, The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc, 18, 419 (2010).

    Article  PubMed  Google Scholar 

  2. N Ugryumova, DP Attenburrow, CP Winlove, et al., The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography. J Phys D: Appl Phys, 38, 2612 (2005).

    Article  CAS  Google Scholar 

  3. CE Kawcak, CW McIlwraith, RW Norrdin, et al., The role of subchondral bone in joint disease: a review. Equine Vet J, 33, 120 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. F Wang, Z Ying, X Duan, et al., Histomorphometric analysis of adult articular calcified cartilage zone, J Struc Biol, 168, 359 (2009).

    Article  Google Scholar 

  5. K Allan, R Pilliar, J Wang, et al., Formation of biphasic constructs containing cartilage with a calcified zone interface, Tissue Eng, 13, 167 (2007).

    Article  PubMed  CAS  Google Scholar 

  6. B Daubs, M Markel, P. Manley, Histomorphometric analysis of articular cartilage, zone of calcified cartilage, and subchondral bone plate in femoral heads from clinically normal dogs and dogs with moderate or severe osteoarthritis, Am J Vet Res, 67, 1719 (2006).

    Article  PubMed  Google Scholar 

  7. H Gupta, S Schratter, W Tesch, et al., Two different correlations between nanoindentation modulus and mineral content in the bone-cartilage interface, J Struct Biol, 149, 138 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. T Lyons, S McClure, R Stoddart, et al., The normal human chondro-osseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces, BMC Musculoskelet Disord, 7, 52 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  9. P Buma, JS Pieper, T van Tienen, et al., Cross-linked type I and type II collagenous matrices for the repair of fullthickness articular cartilage defects—a study in rabbits, Biomaterials, 24, 3255 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. H Domaschke, M Gelinsky, B Burmeister, et al., In vitro ossification and remodeling of mineralized collagen I scaffolds, Tissue Eng, 12, 949 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. M Gelinsky, M Eckert, F Despang, Biphasic, but monolithic scaffolds for the therapy of osteochondral defects, Int J Mat Res (formerly Z. Metallkd.), 98, 749 (2007).

    Article  CAS  Google Scholar 

  12. M Gelinsky, P Welzel, P Simon, et al., Porous three-dimensional scaffolds made of mineralised collagen: Preparation and properties of a biomimetic nanocomposite material for tissue engineering of bone, Chem Eng J, 137, 84 (2008).

    Article  CAS  Google Scholar 

  13. I Martin, S Miot, A Barbero, et al., Osteochondral tissue engineering, J Biomech, 40, 750 (2007).

    Article  PubMed  Google Scholar 

  14. J Sherwood, S Riley, R Palazzolo, et al., A three-dimensional osteochondral composite scaffold for articular cartilage repair, Biomaterials, 23, 4739 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. A Yokoyama, M Gelinsky, T Kawasaki, et al., Biomimetic porous scaffolds with high elasticity made from mineralized collagen-An animal study, J Biomed Mater Res Part B: Applied Biomaterials, 75, 464 (2005).

    Article  Google Scholar 

  16. J Donohue, D Buss, T Oegema, et al., The effects of indirect blunt trauma on adult canine articular cartilage, J Bone Joint Surg, 65, 948 (1983).

    PubMed  CAS  Google Scholar 

  17. Y Lu, T Jiang, Y Zang, Region growing method for the analysis of functional MRI data. Neuroimage, 20, 455 (2003).

    Article  PubMed  Google Scholar 

  18. W Li, J Tian, E Li, et al., Robust unsupervised segmentation of infarct lesion from diffusion tensor MR images using multiscale statistical classification and partial volume voxel reclassification. Neuroimage, 23, 1507 (2004).

    Article  PubMed  Google Scholar 

  19. E Sharon, A Brandt, R Basri, Segmentation and boundary detection using multiscale intensity measurements. Comput Vis Pattern Recogn, 1, 469 (2001).

    Google Scholar 

  20. N E A Khalid, N M Ariff, S Yahya, et al., A Review of Bioinspired Algorithms as Image Processing Techniques. Communin Comput Inf Sci, 179, 660(2011).

    Article  Google Scholar 

  21. T Scarabino, GM Giannatempo, T Popolizio, et al., 3.0-T functional brain imaging: a 5-year experience. Radiol Med, 112, 97(2007).

    Article  PubMed  CAS  Google Scholar 

  22. FS Sjostrand, Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections, J Ultrast Res, 2, 122 (1958).

    Article  CAS  Google Scholar 

  23. E Glaser, H Vanderloos, A semi-automatic computer-microscope for the annalysis of neuronal morphology, IEEE Trans Biomed Eng, 12, 22 (1965).

    Article  PubMed  CAS  Google Scholar 

  24. C Bron, P Gremillet, D Launay, et al., Three-dimensional electron microscopy of entire cells, J Microsc, 157, 115 (1990).

    Article  PubMed  CAS  Google Scholar 

  25. P Gremillet, M Jourlin, C Bron, et al., Dedicated image analysis techniques for three-dimensional reconstruction from serial sections in electron microscopy, Mach Vision Appl, 4, 263 (1991).

    Article  Google Scholar 

  26. C Schmolke, Tissue compartments in laminae II-V of rabbit visual cortex—three-dimensional arrangement, size and developmental changes, Anat Embryol, 193, 15 (1996).

    Article  PubMed  CAS  Google Scholar 

  27. C Schmolke, K Fleischhauer, Morphological characteristics of neocortical laminae when studied in tangential semithin sections through the visual cortex of the rabbit, Anat Embryol, 169, 125 (1984).

    Article  PubMed  CAS  Google Scholar 

  28. T Schormann, K Zilles, Three-dimensional linear and nonlinear transformations: an integration of light microscopical and MRI data, Hum Brain Mapp, 6, 339 (1998).

    Article  PubMed  CAS  Google Scholar 

  29. S Ourselin, A Roche, G Subsol, et al., Reconstructing a 3D structure from serial histological sections, Image Vision Comput, 19, 25 (2001).

    Article  Google Scholar 

  30. M Viergever, J Maintz, W Niessen, et al., Registration, segmentation, and visualization of multimodal brain images, Comput Med Imag Grap, 25, 147 (2001).

    Article  CAS  Google Scholar 

  31. A Hess, K Lohmann, E Gundelfinger, et al., A new method for reliable and efficient reconstruction of 3-dimensional images from autoradiographs of brain sections, J Neurosci Methods, 84, 77 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. J Dauguet, T Delzescaux, F Conde, et al., Three-dimensional reconstruction of stained histological slices and 3D non-linear registration with in-vivo MRI for whole baboon brain, J Neurosci Methods, 164, 191 (2007).

    Article  PubMed  Google Scholar 

  33. O Schmitt, J Modersitzki, S Heldmann, et al., Image registration of sectioned brains, Int J Comput Vision, 73, 5 (2007).

    Article  Google Scholar 

  34. I Sigala, J Flanaganc, I Tertineggc, et al., Reconstruction of human optic nerve heads for finite element modeling, Technol Health Care, 13, 313 (2005).

    Article  Google Scholar 

  35. M Belohlavek, DA Foley, TC Gerber, et al., Three-dimensional reconstruction of color Doppler jets in the human heart, J Am Soc Echocardiogr, 7, 553 (1994).

    Article  PubMed  CAS  Google Scholar 

  36. J Stevens, J Trogadis, Computer-assisted reconstruction from serial electron micrographs: a tool for the systematic study of neuronal form and function, Advan Cell Neurobiol, 5, 341 (1984).

    Article  Google Scholar 

  37. L Brown, A survey of image registration techniques, ACM Comput Surv (CSUR), 24, 325 (1992).

    Article  Google Scholar 

  38. A Toga, P Banerjee, Registration revisited, J Neurosci Methods, 48, 1 (1993).

    Article  PubMed  CAS  Google Scholar 

  39. B Zitova, J Flusser, Image registration methods: a survey, Image Vision Comput, 21, 977 (2003).

    Article  Google Scholar 

  40. G Penney, J Weese, J Little, et al., A comparison of similarity measures for use in 2D-3D medical image registration, Med Image Comput Comput-Assisted Int, 1496, 1153 (1998).

    Google Scholar 

  41. A Roche, G Malandain, N Ayache, Unifying maximum likelihood approaches in medical image registration, Int J Imag Syst Tech, 11, 71 (2000).

    Article  Google Scholar 

  42. J Humm, R Macklis, X Lu, et al., The spatial accuracy of cellular dose estimates obtained from 3D reconstructed serial tissue autoradiographs, Phys Med Biol, 40, 163 (1995).

    Article  PubMed  CAS  Google Scholar 

  43. C Papadimitriou, C Yapijakis, P Davaki, Use of truncated pyramid representation methodology in three-dimensional reconstruction: an example, J Microsc, 214, 70 (2004).

    Article  PubMed  CAS  Google Scholar 

  44. S Brandt, J Heikkonen, P Engelhardt, Multiphase method for automatic alignment of transmission electron microscope images using markers, J Struct Biol, 133, 10 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Guo Bian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Xu, ZW., He, BR. et al. Three dimensional reconstruction of bone-cartilage transitional structures based on semi-automatic registration and automatic segmentation of serial sections. Tissue Eng Regen Med 11, 387–396 (2014). https://doi.org/10.1007/s13770-014-0027-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-014-0027-6

Key words

Navigation