Skip to main content

Construction of an Algorithm for Three-Dimensional Bone Segmentation from Images Obtained by Computational Tomography

  • Chapter
  • First Online:
Current and Future Trends in Health and Medical Informatics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1112))

  • 137 Accesses

Abstract

This paper proposes a tool that extracts data from computational tomography (CT) scans of long bones, applies filters to allow a distinction between cortical and cancellous tissue, and converts the tissues into a three-dimensional (3D) model that can be used to generate finite element meshes. In order to identify the best segmentation technique for the problem under study, cortical, cancellous and medulla tissue segmentation was tested based on image histogram information, simple Hounsfield scale (HU) information, HU scale information with morphological operator filters, and active contour methods (active contour, random walker segmentation and findContours). These segmentations were evaluated qualitatively through a visual comparison and quantitatively through the calculation of the Dice Coefficient (DICE) and Mean-Squared Error (MSE) parameters. The developed algorithm presents a Dice higher than 0.95 and a MSE lower than 0.01 for cortical tissue segmentation, which allows it to be used as a bone characterization method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Remedios, Bone and bone healing. Vet. Clin. North Am. Small Anim. Pract. 29(5), 1029–1044 (1999)

    Article  Google Scholar 

  2. G.J. Tortora, B.H. Derrickson, Principles of Anatomy and Physiology (Wiley, 2018)

    Google Scholar 

  3. A. Completo, F. Fonseca, Fundamentos de Biomecânica Músculo- Esquelética e Ortopédica (Publindústria, Produção de Comunicação, Lda, 2011)

    Google Scholar 

  4. J.D. Heckman, R.W. Bucholz, P. Tornetta III, Rockwood and Green’s Fractures in Adults, 8th edn. (LWW, 2015)

    Google Scholar 

  5. J.-Y. Rho, L. Kuhn-Spearing, P. Zioupos, Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20(2), 92–102 (1998)

    Article  Google Scholar 

  6. F. Judas, P. Palma, R. Falacho, H. Figueiredo, Estrutura E Dinâmica Do Tecido Ósseo (2012)

    Google Scholar 

  7. M. Mehta, P. Strube, A. Peters, C. Perka, D. Hutmacher, P. Fratzl, G.N. Duda, Influences of age and mechanical stability on volume, microstructure, and mineralization of the fracture callus during bone healing: is osteoclast activity the key to age-related impaired healing? Bone 47(2), 219–228 (2010). https://doi.org/10.1016/j.bone.2010.05.029

    Article  Google Scholar 

  8. J. Ebnezar, Textbook of Orthopedics: With Clinical Examination Methods in Orthopedics (JP Medical Ltd., 2010)

    Google Scholar 

  9. The Musculoskeletal System (Structure and Function) (Nursing) Part 1 [Online], http://what-when-how.com/nursing/the-musculoskeletal-system-structure-and-function-nursing-part-1/. Accessed 04 March 2023

  10. M.J. Sánchez‐Fernández, H. Hammoudeh, R.P. Félix Lanao, M. van Erk, J.C.M. van Hest, S.C.G. Leeuwenburgh, Bone‐adhesive materials: clinical requirements, mechanisms of action, and future perspective. Adv. Mater. Interfaces 6(4), 1802021 (2019)

    Google Scholar 

  11. K. Rathnayaka, T. Sahama, M.A. Schuetz, B. Schmutz, Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions. Med. Eng. Phys. 33(2), 226–233 (2011). https://doi.org/10.1016/j.medengphy.2010.10.002

    Article  Google Scholar 

  12. J.B.M. Pisco, Noções fundamentais de imagiologia (1998)

    Google Scholar 

  13. E.Y. Lee, A. Hunsaker, B. Siewert, Computed Body Tomography with MRI Correlation (Lippincott Williams & Wilkins, 2019)

    Google Scholar 

  14. M.M. Khalil, P. Zanzonico, Basic Sciences of Nuclear Medicine (Springer, 2011)

    Google Scholar 

  15. R. Bibb, D. Eggbeer, A. Paterson, Medical imaging. Med. Model 7–34 (2015). https://doi.org/10.1016/B978-1-78242-300-3.00002-0

  16. D.H. Pahr, P.K. Zysset, From high-resolution CT data to finite element models: development of an integrated modular framework. Comput. Methods Biomech. Biomed. Eng. 12(1), 45–57 (2009). https://doi.org/10.1080/10255840802144105

    Article  Google Scholar 

  17. M.A.K. Liebschner, D.L. Kopperdahl, W.S. Rosenberg, T.M. Keaveny, Finite element modeling of the human thoracolumbar spine. Spine (Phila. Pa. 1976) 28(6), 559–565 (2003). https://doi.org/10.1097/01.BRS.0000049923.27694.47

  18. K. Imai, I. Ohnishi, M. Bessho, K. Nakamura, Nonlinear finite element model predicts vertebral bone strength and fracture site. Spine (Phila. Pa. 1976) 31(16), 1789–1794 (2006). https://doi.org/10.1097/01.brs.0000225993.57349.df

  19. P.K. Zysset, A. Curnier, An alternative model for anisotropic elasticity based on fabric tensors. Mech. Mater. 21(4), 243–250 (1995). https://doi.org/10.1016/0167-6636(95)00018-6

    Article  Google Scholar 

  20. J. Dupej, A. Lacoste Jeanson, J. Pelikán, J. Brůžek, Semiautomatic extraction of cortical thickness and diaphyseal curvature from CT scans. Am. J. Phys. Anthropol. 164(4), 868–876 (2017). https://doi.org/10.1002/ajpa.23315

  21. J.P. Tuck-Lee, P.M. Pinsky, C.R. Steele, S. Puria, Finite element modeling of acousto-mechanical coupling in the cat middle ear. J. Acoust. Soc. Am. 124(1), 348–362 (2008). https://doi.org/10.1121/1.2912438

    Article  Google Scholar 

  22. S.P. Väänänen et al., Automated segmentation of cortical and trabecular bone to generate finite element models for femoral bone mechanics. Med. Eng. Phys. 70, 19–28 (2019). https://doi.org/10.1016/j.medengphy.2019.06.015

    Article  Google Scholar 

  23. Get Started with the Image Labeler-MATLAB & Simulink, https://www.mathworks.com/help/vision/ug/get-started-with-the-image-labeler.html

  24. V. Haltakov, Math Terms Mean Squared Error (MSE)

    Google Scholar 

  25. Feature Detectors—Sobel Edge Detector [Online], https://homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm

  26. S. Van Der Walt et al., Scikit-image: image processing in python. PeerJ 1, 2014 (2014)

    Google Scholar 

  27. Module: Segmentation—skimage v0.20.0 docs [Online], https://scikit-image.org/docs/stable/api/skimage.segmentation.html#skimage.segmentation.clear_border. Accessed 20 March 2023

  28. R.C. Gonzales, R.E. Woods, Digital Image Processing, 3rd edn. (Pearson Prentice Hall, New Jersey, 2008)

    Google Scholar 

  29. M. Kass, A. Witkin, Snakes: active contour models. Int. J. Comput. Vis. 321–331 (1988)

    Google Scholar 

  30. N. Craswell, M. Szummer, Random walks on the click graph, in Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’07 (2007), pp. 239–246

    Google Scholar 

  31. W. Schroeder, K.M. Martin, W.E. Lorensen, The Visualization Toolkit an Object-Oriented Approach to 3D Graphics (Prentice-Hall, Inc., 1998)

    Google Scholar 

  32. VTK: vtkMarchingCubes Class Reference [Online], https://vtk.org/doc/nightly/html/classvtkMarchingCubes.html

  33. W.E. Lorensen, H.E. Cline, Marching cubes: a high resolution 3D surface construction algorithm. ACM Siggraph Comput. Gr. 21(4), 163–169 (1987)

    Article  Google Scholar 

  34. VTK: vtkWindowedSincPolyDataFilter Class Reference [Online], https://vtk.org/doc/nightly/html/classvtkWindowedSincPolyDataFilter.html

  35. VTK: vtkFillHolesFilter Class Reference [Online], https://vtk.org/doc/nightly/html/classvtkFillHolesFilter.html

  36. VTK: vtkTriangleFilter Class Reference [Online], https://vtk.org/doc/nightly/html/classvtkTriangleFilter.html

  37. VTK: vtkCleanPolyData Class Reference [Online], https://vtk.org/doc/nightly/html/classvtkCleanPolyData.html

  38. VTK: vtkPolyDataNormals Class Reference [Online], https://vtk.org/doc/nightly/html/classvtkPolyDataNormals.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Barbosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barbosa, M., Renna, F., Dourado, N., Costa, R. (2023). Construction of an Algorithm for Three-Dimensional Bone Segmentation from Images Obtained by Computational Tomography. In: Daimi, K., Alsadoon, A., Seabra Dos Reis, S. (eds) Current and Future Trends in Health and Medical Informatics. Studies in Computational Intelligence, vol 1112. Springer, Cham. https://doi.org/10.1007/978-3-031-42112-9_3

Download citation

Publish with us

Policies and ethics