Skip to main content
Log in

Cu (II) removal intensification using Fe3O4 nanoparticles under inert gas and magnetic field in a microchannel

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In the present study, Cu (II) ions removal from aqueous solution was intensified by exciting magnetic nanoparticles under inert gas, magnetic field and combination of these two mixing methods in a T-type microchannel. The flow patterns and liquid–liquid two-phase mass transfer were studied in three different magnet distances from mixing channel (3, 6 and 10 mm) and also in the presence of different inert gas flow rates (1, 3 and 5 mL/min). Depending on the mixing method and the flow rate of both phases, several distinct flow patterns were observed including slugs, droplet, parallel and dispersed flows. The performances of mixing techniques for mass transfer enhancement based on relative removal efficiency ratio (λ) and mass transfer coefficient ratio (γ) were compared with simple layout (without nanoparticles, magnetic field and inert gas). The results showed that simultaneous using of inert gas and magnetic field can drive the nanoparticles as mixer. Liquid–liquid mass transfer with 27–62% enhancement in E and 235–285% in K L a compared with plain one was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

C aq,in :

Concentration of propionic acid in the inlet of the aqueous phase (mol/L)

C aq,out :

Concentration of propionic acid in the outlet of the aqueous phase (mol/L)

\(C_{\text{aq}}^{*}\) :

Equilibrium concentration of the propionic acid in the aqueous phase (mol/L)

E :

Extraction efficiency (–)

E 0 :

Extraction efficiency of simple layout (without any mixing factor) (–)

K L a :

Volumetric mass transfer coefficient (1/s)

K L a :

Volumetric mass transfer coefficient of simple layout (without any mixing factor) (1/s)

Q aq :

Aqueous phase volume flow rate (m3/s)

Q or :

Organic phase volume flow rate (m3/s)

T :

Temperature (K)

t m :

Residence time of mixture of two phase (s)

V :

Total volume of mixing channel (m3)

λ :

Relative removal efficiency ratio (–)

γ :

Relative mass transfer coefficient ratio (–)

aq:

Aqueous phase

or:

Organic phase

in:

Inlet

m:

Mixture of the liquid–liquid two-phase mass transfer

out:

Outlet

References

  • Assmann N, Von Rohr PR (2011) Extraction in microreactors: intensification by adding an inert gas phase. Chem Eng Process 50:822–827

    Article  CAS  Google Scholar 

  • Azimi N, Rahimi M, Abdollahi N (2015) Using magnetically excited nanoparticles for liquid–liquid two-phase mass transfer enhancement in a Y-type micromixer. Chem Eng Process 97:12–22. doi:10.1016/j.cep.2015.08.010

    Article  CAS  Google Scholar 

  • Aziz HA, Adlan MN, Ariffin KS (2008) Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone. Bioresour Technol 99:1578–1583

    Article  CAS  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377

    Article  CAS  Google Scholar 

  • Belkhouche Nasr-Eddine, Didi Mohamed Amine, Villemin Didier, Villemin Didier (2005) Separation of nickel and copper by solvent extraction using di-2 ethylhexylphosphoric acid-based synergistic mixture. Solvent Extr Ion Exch 23:677–693

    Article  CAS  Google Scholar 

  • Cay S, Uyanık A, Özaşık A (2004) Single and binary component adsorption of copper (II) and cadmium (II) from aqueous solutions using tea-industry waste. Sep Purif Technol 38:273–280. doi:10.1016/j.seppur.2003.12.003

    Article  CAS  Google Scholar 

  • Chang SH, Teng TT, Ismail N (2010) Extraction of Cu (II) from aqueous solutions by vegetable oil-based organic solvents. J Hazard Mater 181:868–872. doi:10.1016/j.jhazmat.2010.05.093

    Article  CAS  Google Scholar 

  • Chang Y-J, Hu C-Y, Lin C-H (2013) A microchannel immunoassay chip with ferrofluid actuation to enhance the biochemical reaction. Sens Actuat B Chem 182:584–591. doi:10.1016/j.snb.2013.03.078

    Article  CAS  Google Scholar 

  • Darekar M, Sen N, Singh K, Mukhopadhyay S, Shenoy K, Ghosh S (2014) Liquid–liquid extraction in microchannels with zinc–D2EHPA system. Hydrometallurgy 144–145:54–62. doi:10.1016/j.hydromet.2014.01.010

    Article  Google Scholar 

  • Hajiani P, Larachi F (2013) Giant effective liquid-self diffusion in stagnant liquids by magnetic nanomixing. Chem Eng Process 71:77–82. doi:10.1016/j.cep.2013.01.014

    Article  CAS  Google Scholar 

  • Huang TC, Tsai TH (1991) Separation of cobalt and nickel ions in sulfate solutions by liquid–liquid extraction and supported liquid membranewith di(2-ethylhexyl)phosphoric acid dissolved in kerosene. J Chem Eng Jpn 24:125–132

    Google Scholar 

  • Ihm SK, Lee HY, Huilee D (1988) Kinetic study of the extraction of copper(II) with di-2-ethyhexyl phosphoric acid in a Lewis-type cell. J Membr Sci 37:181–191

    Article  Google Scholar 

  • Jing H, Yangcheng L, Guangsheng L (2014) Ca (II) imprinted chitosan microspheres: an effective and green adsorbent for the removal of Cu (II), Cd (II) and Pb(II) from aqueous solutions. Chem Eng J 244:202–208. doi:10.1016/j.cej.2014.01.096

    Article  Google Scholar 

  • Jovanovic J, Rebrov EV, Nijhuis T, Kreutzer M, Hessel V, Schouten JC (2011) Liquid–liquid flow in a capillary microreactor: hydrodynamic flow patterns and extraction performance. Ind Eng Chem Res 51:1015–1026. doi:10.1021/ie200715m

    Article  Google Scholar 

  • Karami H (2013) Heavy metal removal from water by magnetite nanorods. Chem Eng J 219:209–216. doi:10.1016/j.cej.2013.01.022

    Article  CAS  Google Scholar 

  • Kumar S (2014) Design and development of extraction process in the isolation of phytopharmaceuticals from plant sources. Int J Med Health Prof Res 1:28–38

    Article  Google Scholar 

  • Lemos LR, Santos IJB, Rodrigues GD, Silva LHM, Silva MCH (2012) Copper recovery from ore by liquid–liquid extraction using aqueous two-phase system. J Hazard Mater 237–238:209–214. doi:10.1016/j.jhazmat.2012.08.028

    Article  Google Scholar 

  • Lin S-HS, Kao H-C, Su H-N, Juang R-S (2005) Effect of formaldehyde on Cu (II) removal from synthetic complexed solutions by solvent extraction. J Hazard Mater 120:1–7. doi:10.1016/j.jhazmat.2004.12.034

    Article  CAS  Google Scholar 

  • Mahvi AH, Nouri J, Babaei AA, Nabizadeh R (2013) Agricultural activities impact on groundwater nitrate pollution. Int J Environ Sci Technol 2:41–47. doi:10.1007/BF03325856

    Article  Google Scholar 

  • Malkoc E, Nuhoglu Y (2005) Investigations of nickel (II) removal from aqueous solutions using tea factory waste. J Hazard Mater 127:120–128. doi:10.1016/j.jhazmat.2005.06.030

    Article  CAS  Google Scholar 

  • Meterfi S, Menia A, Chikhi M (2012) Elimination of Cu (II) from aqueous solutions by liquid–liquid extraction. Test of sodium diethyldithiocarbamate (SDDT) as an extracting agent. Energy Procedia 18:1165–1174

    Article  CAS  Google Scholar 

  • Mondal P, Ghosh S, Das G, Ray S (2010) Phase inversion and mass transfer during liquid–liquid dispersed flow through mini-channel. Chem Eng Process 49:1051–1057. doi:10.1016/j.cep.2010.08.006

    Article  CAS  Google Scholar 

  • Olivier G, Pouya H, Faïçal L (2014) Magnetically induced agitation in liquid–liquid–magnetic nanoparticle emulsions: potential for process intensification. AICHE 60:1176–1181. doi:10.1002/aic.14331

    Article  CAS  Google Scholar 

  • Onundi YB, Mamun AA, Al Khatib MF, Ahmed YM (2010) Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon. Int J Environ Sci Technol 7:751–758. doi:10.1007/BF03326184

    Article  CAS  Google Scholar 

  • Priest C, Zhou J, Klink S, Sedev R, Ralston J (2012) Microfluidic solvent extraction of metal ions and complexes from leach solutions containing nanoparticles. Chem Eng Technol 35:1312–1319. doi:10.1002/ceat.201100602

    Article  CAS  Google Scholar 

  • Rahimi M, Valehe Sheyda P, Parsamoghadam MA, Azimi N, Adibi H (2014) LASP and Villermaux/Dushman protocols for mixing performance in microchannels: effect of geometry on micromixing characterization and size reduction. Chem Eng Process 85:178–186. doi:10.1016/j.cep.2014.09.001

    Article  CAS  Google Scholar 

  • Reed BE, Arunachalam S, Thomas B (1994) Removal of lead and cadmium from aqueous waste streams using granular activated carbon columns. Environ Prog 13:60–64

    Article  CAS  Google Scholar 

  • Salmasi R, Tavassoli A (2006) Pollution of south of Tehran ground waters with heavy metals. Int J Environ Sci Technol 3:147–152. doi:10.1007/BF03325918

    Article  CAS  Google Scholar 

  • Sella C, Bauer D (1998) Diphasic acido-basic properties of organophosphorus acids. Solvent Extr Ion Exch 6:819–833

    Article  Google Scholar 

  • Singh K, Renjith A, Shenoy K (2015) Liquid–liquid extraction in microchannels and conventional stage-wise extractors: a comparative study. Chem Eng Process 98:95–105. doi:10.1016/j.cep.2015.10.013

    Article  CAS  Google Scholar 

  • Su Y, Chen G, Zhao Y, Yuan Q (2009) Intensification of liquid–liquid two-phase mass transfer by gas agitation in a microchannel. AICHE 55:1948–1958. doi:10.1002/aic.11787

    Article  CAS  Google Scholar 

  • Su Y, Zhao Y, Chen G, Yuan Q (2010) Liquid–liquid two-phase flow and mass transfer characteristics in packed microchannel. Chem Eng Sci 65:3947–3956. doi:10.1016/j.ces.2010.03.034

    Article  CAS  Google Scholar 

  • Tamagawa O, Muto A (2011) Development of cesium ion extraction process using a slug flow microreactor. Chem Eng J 167:700–704. doi:10.1016/j.cej.2010.11.002

    Article  CAS  Google Scholar 

  • Van de Voorde I, Pinoy L, Courtijn E, Verpoort F (2005) Influence of acetate ions and the role of the diluents on the extraction of copper-(II), nickel(II), cobalt(II), magnesium(II) an iron(II, III) with differenttypes of extractants. Hydrometallurgy 78:92–106

    Article  Google Scholar 

  • Wei GT, Chen JC, Yang Z (2003) Studies on liquid/liquid extraction of copper ion with room temperature ionic liquid. J Chin Chem Soc Taip 50:1123–1130. doi:10.1002/jccs.200300159

    Article  CAS  Google Scholar 

  • Wu W-D, Liu G, Chen S-X, Zhang H (2013) Nanoferrofluid addition enhances ammonia/water bubble absorption in an external magnetic field. Energy Build 57:268–277. doi:10.1016/j.enbuild.2012.10.032

    Article  Google Scholar 

  • Xu J, Yang L, Wang Z, Dong G, Huang J, Wang Y (2006) Toxicity of copper on rice growth and accumulation of copper in rice grain in copper contaminated soil. Chemosphere 62:602–607. doi:10.1016/j.chemosphere.2005.05.050

    Article  CAS  Google Scholar 

  • Yang L, Zhao Y, Su Y, Chen G (2013) An experimental study of copper extraction characteristics in a T-junction microchannel. Chem Eng Technol 36:985–992. doi:10.1002/ceat.201200464

    Article  CAS  Google Scholar 

  • Yuezhong W, Jianqing M, Jie C, Chensi S, Hong L, Weiping L (2015) Carbonaceous sulfur-containing chitosan–Fe(III): a novel adsorbent for efficient removal of copper (II) from water. Chem Eng J 259:372–380. doi:10.1016/j.cej.2014.08.011

    Article  Google Scholar 

  • Zhao Y, Chen G, Yuan Q (2007) Liquid–liquid two-phase mass transfer in the T-junction microchannels. AICHE 53:3042–3053. doi:10.1002/aic.11333

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Nanotechnology Initiative Council of Iran for providing the financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rahimi.

Additional information

Editorial responsibility: B.B. Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, O., Rahimi, M., Hosseini Kakavandi, F. et al. Cu (II) removal intensification using Fe3O4 nanoparticles under inert gas and magnetic field in a microchannel. Int. J. Environ. Sci. Technol. 14, 1651–1664 (2017). https://doi.org/10.1007/s13762-017-1276-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1276-4

Keywords

Navigation