Skip to main content
Log in

Release of lead from Pb-clinoptilolite: managing the fate of an exhausted exchanger

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The selectivity of clinoptilolite toward Pb2+ has stimulated many studies aimed to evaluate the metal uptake. Conversely, the management of a Pb-bearing clinoptilolite has not received the same attention, although it can release a harmful metal. This work aims to evaluate the possibility to control, through thermal treatments, the release of lead from a Pb-clinoptilolite, prepared to simulate the condition of highest dangerousness of an exhausted exchanger. A zeolite-rich rock from Sardinia (Italy) has been processed, obtaining a powder with almost 90 % (wt.) of clinoptilolite. This material has been initially Na- and then Pb-exchanged, reaching a Pb2+ content of 2.28 meq/g. The lead release has been tested before and after 2-h heating at eight different temperatures from 200 to 900 °C. The unheated material releases 64 % of the lead. Heating weakly affects lead release up to 400 °C (54 %), but higher temperatures determine an abrupt reduction from 44 % at 500 °C to 1 % at 700 °C, when the zeolite breakdown occurs. At 800 °C the nucleation of Pb-feldspar and silica polymorphs begins. Basically, the material heated at 900 °C does not release lead (0.03 %), because the metal is trapped in the lead feldspar, whose content attains 42 % (wt.). This solid-state transformation does not involve the emission of lead vapors, another significant environmental aspect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Armbruster T (2001) Clinoptilolite-heulandite: applications and basic research. Stud Surf Sci Catal 135:13–27. doi:10.1016/S0167-2991(01)81183-6

    Article  Google Scholar 

  • Bektaş N, Kara S (2004) Removal of lead from aqueous solutions by natural clinoptilolite: equilibrium and kinetic studies. Sep Purif Technol 39(3):189–200. doi:10.1016/j.seppur.2003.12.001

    Article  Google Scholar 

  • Bish DL, Carey JW (2001) Thermal behavior of natural zeolites. In: Bish DL, Ming D (eds) Natural zeolites: occurrence, properties, applications. Reviews in mineralogy and geochemistry, vol 45. The Mineralogical Society of America, Washington (DC), pp 403–452

    Google Scholar 

  • Blanchard G, Maunaye M, Martin G (1984) Removal of heavy-metals from waters by means of natural zeolites. Water Res 18:1501–1507. doi:10.1016/0043-1354(84)90124-6

    Article  CAS  Google Scholar 

  • Brundu A, Cerri G (2015) Thermal transformation of Cs-clinoptilolite to CsAlSi5O12. Microporous Mesoporous Mater 208:44–49. doi:10.1016/j.micromeso.2015.01.029

    Article  CAS  Google Scholar 

  • Cerri G, Cappelletti P, Langella A, de’ Gennaro M (2001) Zeolitization of Oligo-Miocene volcaniclastic rocks from Logudoro (northern Sardinia, Italy). Contrib Mineral Petrol 140:404–421. doi:10.1007/s004100000196

    Article  CAS  Google Scholar 

  • Cerri G, de’ Gennaro M, Bonferoni MC, Caramella C (2004) Zeolites in biomedical application: Zn-exchanged clinoptilolite-rich rock as active carrier for antibiotics in anti-acne topical therapy. Appl Clay Sci 27(3–4):141–150. doi:10.1016/j.clay.2004.04.004

    Article  CAS  Google Scholar 

  • Cerri G, Farina M, Brundu A, Daković A, Giunchedi P, Gavini E, Rassu G (2016) Natural zeolites for pharmaceutical formulations: preparation and evaluation of a clinoptilolite-based material. Microporous Mesoporous Mater 223:58–67. doi:10.1016/j.micromeso.2015.10.034

    Article  CAS  Google Scholar 

  • Chen S, Zhao B, Hayes PC, Jak E (2001) Experimental study of phase equilibria in the PbO–Al2O3–SiO2 system. Metall Mater Trans B 32(6):997–1005. doi:10.1007/s11663-001-0088-5

    Article  Google Scholar 

  • Cruciani G (2006) Zeolites upon heating: factors governing their thermal stability and structural changes. J Phys Chem Solids 67:1973–1994. doi:10.1016/j.jpcs.2006.05.057

    Article  CAS  Google Scholar 

  • Dascălu D, Pitulice L, Ionel R, Bizerea-Spiridon O (2015) The usage of a zeolitic composite for quality improvement of copper contaminated mining wastewaters. Int J Environ Sci Technol 12:2285–2298. doi:10.1007/s13762-014-0629-5

    Article  Google Scholar 

  • Enamorado-Horrutiner Y, Villanueva-Tagle ME, Behar M, Rodríguez-Fuentes G, Ferraz Dias J, Pomares-Alfonso MS (2016) Cuban zeolite for lead sorption: application for water decontamination and metal quantification in water using nondestructive techniques. Int J Environ Sci Technol 13(5):1245–1256. doi:10.1007/s13762-016-0956-9

    Article  CAS  Google Scholar 

  • Garcia-Basabe Y, Rodriguez-Iznaga I, de Menorval LC, Llewellyn P, Maurin G, Lewis DW, Binions R, Autie M, Ruiz-Salvador AR (2010) Step-wise dealumination of natural clinoptilolite: structural and physicochemical characterization. Microporous Mesoporous Mater 135:187–196. doi:10.1016/j.micromeso.2010.07.008

    Article  CAS  Google Scholar 

  • Gatta GD, Brundu A, Cappelletti P, Cerri G, de’ Gennaro B, Farina M, Fumagalli P, Guaschino L, Lotti P, Mercurio M (2016) New insights on pressure, temperature, and chemical stability of CsAlSi5O12, a potential host for nuclear waste. Phys Chem Minerals 43:639–647. doi:10.1007/s00269-016-0823-8

    Article  CAS  Google Scholar 

  • Guzel P, Aydin YA, Deveci Aksoy N (2016) Removal of chromate from wastewater using amine-based-surfactant-modified clinoptilolite. Int J Environ Sci Technol 13(5):1277–1288. doi:10.1007/s13762-016-0954-y

    Article  CAS  Google Scholar 

  • Hamidpour M, Afyuni M, Kalbasi M, Khoshgoftarmanes AH, Inglezakis VJ (2010a) Mobility and plant-availability of Cd(II) and Pb(II) adsorbed on zeolite and bentonite. Appl Clay Sci 48:342–348. doi:10.1016/j.clay.2010.01.004

    Article  CAS  Google Scholar 

  • Hamidpour M, Kalbasi M, Afyuni M, Shariatmadari H, Holm PE, Hansen HC (2010b) Sorption hysteresis of Cd(II) and Pb(II) on natural zeolite and bentonite. J Hazard Mater 181:686–691. doi:10.1016/j.jhazmat.2010.05.067

    Article  CAS  Google Scholar 

  • Inglezakis VJ, Stylianou MA, Gkantzou D, Loizidou MD (2007) Removal of Pb(II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination 210(1–3):248–256. doi:10.1016/j.desal.2006.05.049

    Article  CAS  Google Scholar 

  • Kalló D (2001) Applications of natural zeolites in water and wastewater treatment. In: Bish DL, Ming D (eds) Natural zeolites: occurrence, properties, applications. Reviews in mineralogy and geochemistry, vol 45. The Mineralogical Society of America, Washington (DC), pp 519–550

    Google Scholar 

  • Kesraoul-Oukl S, Cheeseman C, Perry R (1993) Effects of conditioning and treatment of chabazite and clinoptilolite prior to lead and cadmium removal. Environ Sci Technol 27:1108–1116. doi:10.1021/es00043a009

    Article  Google Scholar 

  • Langella A, Pansini M, Cappelletti P, De Gennaro B, de’ Gennaro M, Colella C (2000) NH4+, Cu2+, Zn2+, Cd2+ and Pb2+ exchange for Na+ in a sedimentary clinoptilolite, North Sardinia, Italy. Microporous Mesoporous Mater 37:337–343. doi:10.1016/S1387-1811(99)00276-0

    Article  CAS  Google Scholar 

  • Lata S, Singh PK, Samadder SR (2015) Regeneration of adsorbents and recovery of heavy metals: a review. Int J Environ Sci Technol 12:1461–1478. doi:10.1007/s13762-014-0714-9

    Article  CAS  Google Scholar 

  • Loizidou MD, Townsend RP (1987) Ion exchange properties of natural clinoptilolite, ferrierite and mordenite: part 2. Lead–sodium and lead–ammonium equilibria. Zeolites 7:153–159. doi:10.1016/0144-2449(87)90078-9

    Article  CAS  Google Scholar 

  • Lu X, Shih K, Cheng H (2013) Lead glass-ceramics produced from the beneficial use of waterworks sludge. Water Res 47(3):1353–1360. doi:10.1016/j.watres.2012.11.045

    Article  CAS  Google Scholar 

  • Matoušek J, Janů T (2001) Evaporation of PbO–SiO2 and K2O–PbO–SiO2 melts. Ceram-Silikáty 45(4):137–141. http://www.ceramics-silikaty.cz/2001/pdf/2001_04_137.pdf

  • Moattar F, Hayeripour S (2004) Application of chitin and zeolite adsorbents for treatment of low level radioactive liquid wastes. Int J Environ Sci Technol 1(1):45–50. doi:10.1007/BF03325815

    Article  Google Scholar 

  • Moroni M, Brigida C, Poli S, Valle M (2004) Fixing chromium and lead in ceramic materials: a petrological approach to inertization and recycling of toxic industrial waste. Period Mineral 73(3):99–111. http://tetide.geo.uniroma1.it/riviste/permin/testi/V73/38.pdf

  • Motsa MM, Mamba BB, Thwala JM, Msagati TAM (2011) Preparation, characterization, and application of polypropylene–clinoptilolite composites for the selective adsorption of lead from aqueous media. J Colloid Interface Sci 359(1):210–219. doi:10.1016/j.jcis.2011.02.067

    Article  CAS  Google Scholar 

  • Nuić I, Trgo M, Perić J, Vukojević Medvidović N (2013) Analysis of breakthrough curves of Pb and Zn sorption from binary solutions on natural clinoptilolite. Microporous Mesoporous Mater 167:55–61. doi:10.1016/j.micromeso.2012.04.037

    Article  Google Scholar 

  • Pabalan RT, Bertetti FP (2001) Cation-exchange properties of natural zeolites. In: Bish DL, Ming D (eds) Natural zeolites: occurrence, properties, applications. Reviews in mineralogy and geochemistry, vol 45. The Mineralogical Society of America, Washington (DC), pp 453–518

    Google Scholar 

  • Radosavljevic-Mihajlovic AS, Kremenovic AS, Dosen AM, Andrejic JZ, Dondur VT (2015) Thermally induced phase transformation of Pb-exchanged LTA and FAU-framework zeolite to feldspar phases. Microporous Mesoporous Mater 201:210–218. doi:10.1016/j.micromeso.2014.08.059

    Article  CAS  Google Scholar 

  • Rahmani AR, Mahvi AH, Mesdaghinia AR, Nasseri S (2004) Investigation of ammonia removal from polluted waters by Clinoptilolite zeolite. Int J Environ Sci Technol 1(2):125–133. doi:10.1007/BF03325825

    Article  CAS  Google Scholar 

  • Ranjbar F, Jalali M (2016) Empirical and mechanistic evaluation of sodium exchange isotherms on natural mineral and organic adsorbents and organically functionalized nanoparticles. Int J Environ Sci Technol. doi:10.1007/s13762-016-0983-6

    Google Scholar 

  • Semmens MJ, Seyfarth M (1978) The selectivity of clinoptilolite for certain heavy metals. In: Sand LB, Mumpton FA (eds) Natural zeolites: occurrence, properties, use. Pergamon Press, Elmsford, pp 517–526

    Google Scholar 

  • Sprynskyy M, Buszewski B, Terzyk AP, Namieśnik J (2006) Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J Colloid Interface Sci 304:21–28. doi:10.1016/j.jcis.2006.07.068

    Article  CAS  Google Scholar 

  • Um W, Papelis C (2004) Metal ion sorption and desorption on zeolitized tuffs from the nevada test site. Environ Sci Technol 38(2):496–502. doi:10.1021/es0343050

    Article  CAS  Google Scholar 

  • Vukojević Medvidović N, Perić J, Trgo M, Mužek MN (2007) Removal of lead ions by fixed bed of clinoptilolite—the effect of flow rate. Microporous Mesoporous Mater 105(3):298–304. doi:10.1016/j.micromeso.2007.04.015

    Article  Google Scholar 

  • Wingenfelder U, Hansen C, Furrer G, Schulin R (2005) Removal of heavy metals from mine waters by natural zeolites. Environ Sci Technol 39(12):4606–4613. doi:10.1021/es048482s

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Marco Biagioli (Sassari University) for AAS analyses. Antonio Brundu acknowledges the financial support of “Regione Autonoma della Sardegna”—P.O. Sardegna FSE 2007-2013, L.R. 7/2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Brundu.

Additional information

Editorial responsibility: Tanmoy Karak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brundu, A., Cerri, G. Release of lead from Pb-clinoptilolite: managing the fate of an exhausted exchanger. Int. J. Environ. Sci. Technol. 14, 223–232 (2017). https://doi.org/10.1007/s13762-016-1149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1149-2

Keywords

Navigation